\form#0:$f(x)$ \form#1:$x$ \form#2:$ f( x | y) $ \form#3:$ x $ \form#4:$ y $ \form#5:$ u_t $ \form#6:$ y_t $ \form#7:$ d_t=[y_t,u_t, \ldots ]$ \form#8:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] \form#9:$y_t$ \form#10:$ c_t $ \form#11:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] \form#12:$x=$ \form#13:$ f_x()$ \form#14:$ [x_1 , x_2 , \ldots \ $ \form#15:$ f_x(rv)$ \form#16:$x \sim epdf(rv|cond)$ \form#17:$[Up_{t-1},Up_{t-2}, \ldots]$ \form#18:$ t $ \form#19:$ t+1 $ \form#20:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ \form#21:$ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $ \form#22:$t$ \form#23:$[y_{t} y_{t-1} ...]$ \form#24:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ \form#25:$ f(x_t|x_{t-1}) $ \form#26:$ f(d_t|x_t) $ \form#27:\[ L(y,u) = (y-y_{req})'Q_y (y-y_{req}) + (u-u_{req})' Q_u (u-u_{req}) \] \form#28:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] \form#29:$[\theta r]$ \form#30:$\psi=\psi(y_{1:t},u_{1:t})$ \form#31:$u_t$ \form#32:$e_t$ \form#33:\[ e_t \sim \mathcal{N}(0,1). \] \form#34:$\theta,r$ \form#35:$ dt = [y_t psi_t] $ \form#36:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] \form#37:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] \form#38:\[ x_{t+1} = Ax_t + B u_t + R^{1/2} e_t, y_t=Cx_t+Du_t + R^{1/2}w_t, \] \form#39:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] \form#40:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] \form#41:$\psi$ \form#42:$w=[w_1,\ldots,w_n]$ \form#43:$\theta_i$ \form#44:$\Theta$ \form#45:$\Theta = [\theta_1,\ldots,\theta_n,w]$ \form#46:$A=Ch' Ch$ \form#47:$Ch$ \form#48:$f(x) = a$ \form#49:$f(x) = Ax+B$ \form#50:$f(x,u)$ \form#51:$f(x,u) = Ax+Bu$ \form#52:$f(x0,u0)$ \form#53:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ \form#54:$u$ \form#55:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ \form#56:\[M = L'DL\] \form#57:$L$ \form#58:$D$ \form#59:$V = V + w v v'$ \form#60:$C$ \form#61:$V = C*V*C'$ \form#62:$V = C'*V*C$ \form#63:$V$ \form#64:$x= v'*V*v$ \form#65:$x= v'*inv(V)*v$ \form#66:$U$ \form#67:$A'D0 A$ \form#68:$L'DL$ \form#69:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \form#70:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] \form#71:$ f(rvc) = \int f(rv,rvc) d\ rv $ \form#72:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] \form#73:$f_i(x)$ \form#74:$p$ \form#75:$p\times$ \form#76:$n$ \form#77:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] \form#78:$\gamma=\sum_i \beta_i$ \form#79:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] \form#80:$\beta$ \form#81:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] \form#82:$ \mu=A*\mbox{rvc}+\mu_0 $ \form#83:$\mu$ \form#84:$k$ \form#85:$\alpha=k$ \form#86:$\beta=k/\mu$ \form#87:$\mu/\sqrt(k)$ \form#88:$ \mu $ \form#89:$ k $ \form#90:$ \alpha=\mu/k^2+2 $ \form#91:$ \beta=\mu(\alpha-1)$ \form#92:$ \mu/\sqrt(k)$ \form#93:$l$ \form#94:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] \form#95:$ \log(x)\sim \mathcal{N}(\mu,\sigma^2) $ \form#96:\[ x \sim \frac{1}{x\sigma\sqrt{2\pi}}\exp{-\frac{1}{2\sigma^2}(\log(x)-\mu)} \] \form#97:$\mathcal{I}$ \form#98:$\theta$ \form#99:$\alpha$ \form#100:$ \Lambda $ \form#101:$ R $ \form#102:$ R_e $ \form#103:$ \Psi $ \form#104:$ \nu $ \form#105:$ \nu-p-1 $ \form#106:$w$ \form#107:$x^{(i)}, i=1..n$ \form#108:\[ f(x_i|y_i), i=1..n \] \form#109:$ \cup [x_i,y_i] $ \form#110:\[ f(z_i|y_i,x_i) f(x_i|y_i) f(y_i) i=1..n \] \form#111:$ z_i $ \form#112:$ y_i={}, z_i={}, \forall i $ \form#113:$ f(z_i|x_i,y_i) $ \form#114:$ f(D) $ \form#115:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] \form#116:$ f(a|b,c) $ \form#117:$ f(b) $ \form#118:$ f(c) $ \form#119:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} \form#120:$ x_t $ \form#121:$ A, B, C, D$ \form#122:$v_t, w_t$ \form#123:$Q, R$ \form#124:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} \form#125:$ g(), h() $ \form#126:\[ y_t = \theta' \psi_t + \rho e_t \] \form#127:$[\theta,\rho]$ \form#128:$\psi_t$ \form#129:$\mathcal{N}(0,1)$ \form#130:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] \form#131:\[ \nu_t = \sum_{i=0}^{n} 1 \] \form#132:$ \theta_t , r_t $ \form#133:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] \form#134:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] \form#135:$ \phi $ \form#136:$ \phi \in [0,1]$ \form#137:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] \form#138:$ \phi=0.9 $ \form#139:$ V_0 , \nu_0 $ \form#140:$ V_t , \nu_t $ \form#141:$ \phi<1 $