Gauss-inverse-Wishart density stored in LD form. More...
Gauss-inverse-Wishart density stored in LD form.
For  -variate densities, given rv.count() should be
-variate densities, given rv.count() should be  V.rows().
 V.rows(). 
#include <exp_family.h>
| Public Member Functions | |
| vec | sample () const | 
| Returns a sample,  from density  . | |
| vec | mean () const | 
| return expected value | |
| vec | variance () const | 
| return expected variance (not covariance!) | |
| vec | est_theta () const | 
| LS estimate of  . | |
| ldmat | est_theta_cov () const | 
| Covariance of the LS estimate. | |
| void | mean_mat (mat &M, mat &R) const | 
| expected values of the linear coefficient and the covariance matrix are written to MandR, respectively | |
| double | evallog_nn (const vec &val) const | 
| In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise val = [theta_1 theta_2 ... r_1 r_2 ]. | |
| double | lognc () const | 
| logarithm of the normalizing constant,   | |
| void | pow (double p) | 
| Power of the density, used e.g. to flatten the density. | |
| virtual double | evallog (const vec &val) const | 
| Evaluate normalized log-probability. | |
| virtual vec | evallog_m (const mat &Val) const | 
| Evaluate normalized log-probability for many samples. | |
| virtual vec | evallog_m (const Array< vec > &Val) const | 
| Evaluate normalized log-probability for many samples. | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance. | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure. | |
| virtual void | validate () | 
| This method TODO. | |
| Constructors | |
| egiw () | |
| egiw (int dimx0, ldmat V0, double nu0=-1.0) | |
| void | set_parameters (int dimx0, ldmat V0, double nu0=-1.0) | 
| Access attributes | |
| ldmat & | _V () | 
| const ldmat & | _V () const | 
| double & | _nu () | 
| const double & | _nu () const | 
| void | from_setting (const Setting &set) | 
| Load from structure with elements:. | |
| Constructors | |
| Construction of each epdf should support two types of constructors: 
 The following constructors should be supported for convenience: 
 All internal data structures are constructed as empty. Their values (including sizes) will be set by method  | |
| void | set_parameters (int dim0) | 
| Matematical Operations | |
| virtual mat | sample_m (int N) const | 
| Returns N samples,  from density  . | |
| virtual shared_ptr< mpdf > | condition (const RV &rv) const | 
| Return conditional density on the given RV, the remaining rvs will be in conditioning. | |
| virtual shared_ptr< epdf > | marginal (const RV &rv) const | 
| Return marginal density on the given RV, the remainig rvs are intergrated out. | |
| virtual void | qbounds (vec &lb, vec &ub, double percentage=0.95) const | 
| Lower and upper bounds of percentage% quantile, returns mean-2*sigma as default. | |
| Connection to other classes | |
| void | set_rv (const RV &rv0) | 
| Name its rv. | |
| bool | isnamed () const | 
| True if rv is assigned. | |
| const RV & | _rv () const | 
| Return name (fails when isnamed is false). | |
| Access to attributes | |
| int | dimension () const | 
| Size of the random variable. | |
| Protected Attributes | |
| ldmat | V | 
| Extended information matrix of sufficient statistics. | |
| double | nu | 
| Number of data records (degrees of freedom) of sufficient statistics. | |
| int | dimx | 
| Dimension of the output. | |
| int | nPsi | 
| Dimension of the regressor. | |
| int | dim | 
| dimension of the random variable | |
| RV | rv | 
| Description of the random variable. | |
| void bdm::egiw::from_setting | ( | const Setting & | set | ) |  [inline, virtual] | 
Load from structure with elements:.
         { rv = {class="RV", names=(...),}; // RV describing meaning of random variable
           // elements of offsprings
         }
Reimplemented from bdm::epdf.
References dimx, bdm::UI::get(), nu, bdm::epdf::rv, and bdm::epdf::set_rv().
 1.6.1
 1.6.1