00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 
00017 #include "../shared_ptr.h"
00018 #include "../base/bdmbase.h"
00019 #include "../math/chmat.h"
00020 
00021 namespace bdm
00022 {
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf
00039 {
00040         public:
00041 
00043                 eEF () : epdf () {};
00045                 virtual double lognc() const = 0;
00046 
00048                 virtual double evallog_nn (const vec &val) const {
00049                         bdm_error ("Not implemented");
00050                         return 0.0;
00051                 }
00052 
00054                 virtual double evallog (const vec &val) const {
00055                         double tmp;
00056                         tmp = evallog_nn (val) - lognc();
00057                         return tmp;
00058                 }
00060                 virtual vec evallog_m (const mat &Val) const {
00061                         vec x (Val.cols());
00062                         for (int i = 0;i < Val.cols();i++) {x (i) = evallog_nn (Val.get_col (i)) ;}
00063                         return x -lognc();
00064                 }
00066                 virtual vec evallog_m (const Array<vec> &Val) const {
00067                         vec x (Val.length());
00068                         for (int i = 0;i < Val.length();i++) {x (i) = evallog_nn (Val (i)) ;}
00069                         return x -lognc();
00070                 }
00071 
00073                 virtual void pow (double p) {
00074                         bdm_error ("Not implemented");
00075                 }
00076 };
00077 
00078 
00080 class BMEF : public BM
00081 {
00082         protected:
00084                 double frg;
00086                 double last_lognc;
00087         public:
00089                 BMEF (double frg0 = 1.0) : BM (), frg (frg0) {}
00091                 BMEF (const BMEF &B) : BM (B), frg (B.frg), last_lognc (B.last_lognc) {}
00093                 virtual void set_statistics (const BMEF* BM0) {
00094                         bdm_error ("Not implemented");
00095                 }
00096 
00098                 virtual void bayes (const vec &data, const double w) {};
00099                 
00100                 void bayes (const vec &dt);
00101 
00103                 virtual void flatten (const BMEF * B) {
00104                         bdm_error ("Not implemented");
00105                 }
00106 
00107                 BMEF* _copy_ () const {
00108                         bdm_error ("function _copy_ not implemented for this BM");
00109                         return NULL;
00110                 }
00111 };
00112 
00113 template<class sq_T, template <typename> class TEpdf>
00114 class mlnorm;
00115 
00121 template<class sq_T>
00122 class enorm : public eEF
00123 {
00124         protected:
00126                 vec mu;
00128                 sq_T R;
00129         public:
00132 
00133                 enorm () : eEF (), mu (), R () {};
00134                 enorm (const vec &mu, const sq_T &R) {set_parameters (mu, R);}
00135                 void set_parameters (const vec &mu, const sq_T &R);
00145                 void from_setting (const Setting &root);
00146                 void validate() {
00147                         bdm_assert (mu.length() == R.rows(), "mu and R parameters do not match");
00148                         dim = mu.length();
00149                 }
00151 
00154 
00156                 void dupdate (mat &v, double nu = 1.0);
00157 
00158                 vec sample() const;
00159 
00160                 double evallog_nn (const vec &val) const;
00161                 double lognc () const;
00162                 vec mean() const {return mu;}
00163                 vec variance() const {return diag (R.to_mat());}
00164 
00165                 shared_ptr<mpdf> condition ( const RV &rvn ) const;
00166 
00167                 
00168                 
00169                 
00170                 
00171                 void condition ( const RV &rvn, mpdf &target ) const;
00172 
00173                 shared_ptr<epdf> marginal (const RV &rvn ) const;
00174                 void marginal ( const RV &rvn, enorm<sq_T> &target ) const;
00176 
00179 
00180                 vec& _mu() {return mu;}
00181                 const vec& _mu() const {return mu;}
00182                 void set_mu (const vec mu0) { mu = mu0;}
00183                 sq_T& _R() {return R;}
00184                 const sq_T& _R() const {return R;}
00186 
00187 };
00188 UIREGISTER2 (enorm, chmat);
00189 SHAREDPTR2 ( enorm, chmat );
00190 UIREGISTER2 (enorm, ldmat);
00191 SHAREDPTR2 ( enorm, ldmat );
00192 UIREGISTER2 (enorm, fsqmat);
00193 SHAREDPTR2 ( enorm, fsqmat );
00194 
00195 
00202 class egiw : public eEF
00203 {
00204         protected:
00206                 ldmat V;
00208                 double nu;
00210                 int dimx;
00212                 int nPsi;
00213         public:
00216                 egiw() : eEF() {};
00217                 egiw (int dimx0, ldmat V0, double nu0 = -1.0) : eEF() {set_parameters (dimx0, V0, nu0);};
00218 
00219                 void set_parameters (int dimx0, ldmat V0, double nu0 = -1.0) {
00220                         dimx = dimx0;
00221                         nPsi = V0.rows() - dimx;
00222                         dim = dimx * (dimx + nPsi); 
00223 
00224                         V = V0;
00225                         if (nu0 < 0) {
00226                                 nu = 0.1 + nPsi + 2 * dimx + 2; 
00227                                 
00228                         } else {
00229                                 nu = nu0;
00230                         }
00231                 }
00233 
00234                 vec sample() const;
00235                 vec mean() const;
00236                 vec variance() const;
00237 
00239                 vec est_theta() const;
00240 
00242                 ldmat est_theta_cov() const;
00243 
00245                 void mean_mat (mat &M, mat&R) const;
00247                 double evallog_nn (const vec &val) const;
00248                 double lognc () const;
00249                 void pow (double p) {V *= p;nu *= p;};
00250 
00253 
00254                 ldmat& _V() {return V;}
00255                 const ldmat& _V() const {return V;}
00256                 double& _nu()  {return nu;}
00257                 const double& _nu() const {return nu;}
00272                 void from_setting (const Setting &set) {
00273                         epdf::from_setting(set);
00274                         if (!UI::get (nu, set, "nu", UI::compulsory)) {nu=-1;}
00275                         UI::get (dimx, set, "dimx", UI::compulsory);
00276                         mat V;
00277                         UI::get (V, set, "V", UI::compulsory);
00278                         set_parameters (dimx, V, nu);
00279                 }
00281 };
00282 UIREGISTER ( egiw );
00283 SHAREDPTR ( egiw );
00284 
00293 class eDirich: public eEF
00294 {
00295         protected:
00297                 vec beta;
00298         public:
00301 
00302                 eDirich () : eEF () {};
00303                 eDirich (const eDirich &D0) : eEF () {set_parameters (D0.beta);};
00304                 eDirich (const vec &beta0) {set_parameters (beta0);};
00305                 void set_parameters (const vec &beta0) {
00306                         beta = beta0;
00307                         dim = beta.length();
00308                 }
00310 
00311                 vec sample() const {
00312                         bdm_error ("Not implemented");
00313                         return vec();
00314                 }
00315 
00316                 vec mean() const {return beta / sum (beta);};
00317                 vec variance() const {double gamma = sum (beta); return elem_mult (beta, (beta + 1)) / (gamma* (gamma + 1));}
00319                 double evallog_nn (const vec &val) const {
00320                         double tmp; tmp = (beta - 1) * log (val);
00321                         return tmp;
00322                 }
00323 
00324                 double lognc () const {
00325                         double tmp;
00326                         double gam = sum (beta);
00327                         double lgb = 0.0;
00328                         for (int i = 0;i < beta.length();i++) {lgb += lgamma (beta (i));}
00329                         tmp = lgb - lgamma (gam);
00330                         return tmp;
00331                 }
00332 
00334                 vec& _beta()  {return beta;}
00336 };
00337 
00339 class multiBM : public BMEF
00340 {
00341         protected:
00343                 eDirich est;
00345                 vec β
00346         public:
00348                 multiBM () : BMEF (), est (), beta (est._beta()) {
00349                         if (beta.length() > 0) {last_lognc = est.lognc();}
00350                         else{last_lognc = 0.0;}
00351                 }
00353                 multiBM (const multiBM &B) : BMEF (B), est (B.est), beta (est._beta()) {}
00355                 void set_statistics (const BM* mB0) {const multiBM* mB = dynamic_cast<const multiBM*> (mB0); beta = mB->beta;}
00356                 void bayes (const vec &dt) {
00357                         if (frg < 1.0) {beta *= frg;last_lognc = est.lognc();}
00358                         beta += dt;
00359                         if (evalll) {ll = est.lognc() - last_lognc;}
00360                 }
00361                 double logpred (const vec &dt) const {
00362                         eDirich pred (est);
00363                         vec &beta = pred._beta();
00364 
00365                         double lll;
00366                         if (frg < 1.0)
00367                                 {beta *= frg;lll = pred.lognc();}
00368                         else
00369                                 if (evalll) {lll = last_lognc;}
00370                                 else{lll = pred.lognc();}
00371 
00372                         beta += dt;
00373                         return pred.lognc() - lll;
00374                 }
00375                 void flatten (const BMEF* B) {
00376                         const multiBM* E = dynamic_cast<const multiBM*> (B);
00377                         
00378                         const vec &Eb = E->beta;
00379                         beta *= (sum (Eb) / sum (beta));
00380                         if (evalll) {last_lognc = est.lognc();}
00381                 }
00383                 const eDirich& posterior() const {return est;};
00385                 void set_parameters (const vec &beta0) {
00386                         est.set_parameters (beta0);
00387                         if (evalll) {last_lognc = est.lognc();}
00388                 }
00389 };
00390 
00400 class egamma : public eEF
00401 {
00402         protected:
00404                 vec alpha;
00406                 vec beta;
00407         public :
00410                 egamma () : eEF (), alpha (0), beta (0) {};
00411                 egamma (const vec &a, const vec &b) {set_parameters (a, b);};
00412                 void set_parameters (const vec &a, const vec &b) {alpha = a, beta = b;dim = alpha.length();};
00414 
00415                 vec sample() const;
00416                 double evallog (const vec &val) const;
00417                 double lognc () const;
00419                 vec& _alpha() {return alpha;}
00421                 vec& _beta() {return beta;}
00422                 vec mean() const {return elem_div (alpha, beta);}
00423                 vec variance() const {return elem_div (alpha, elem_mult (beta, beta)); }
00424 
00435                 void from_setting (const Setting &set) {
00436                         epdf::from_setting (set); 
00437                         UI::get (alpha, set, "alpha", UI::compulsory);
00438                         UI::get (beta, set, "beta", UI::compulsory);
00439                         validate();
00440                 }
00441                 void validate() {
00442                         bdm_assert (alpha.length() == beta.length(), "parameters do not match");
00443                         dim = alpha.length();
00444                 }
00445 };
00446 UIREGISTER (egamma);
00447 SHAREDPTR ( egamma );
00448 
00465 class eigamma : public egamma
00466 {
00467         protected:
00468         public :
00473 
00474                 vec sample() const {return 1.0 / egamma::sample();};
00476                 vec mean() const {return elem_div (beta, alpha - 1);}
00477                 vec variance() const {vec mea = mean(); return elem_div (elem_mult (mea, mea), alpha - 2);}
00478 };
00479 
00481 
00482 
00483 
00484 
00485 
00486 
00488 
00489 
00490 
00491 
00492 
00493 
00495 
00496 class euni: public epdf
00497 {
00498         protected:
00500                 vec low;
00502                 vec high;
00504                 vec distance;
00506                 double nk;
00508                 double lnk;
00509         public:
00512                 euni () : epdf () {}
00513                 euni (const vec &low0, const vec &high0) {set_parameters (low0, high0);}
00514                 void set_parameters (const vec &low0, const vec &high0) {
00515                         distance = high0 - low0;
00516                         low = low0;
00517                         high = high0;
00518                         nk = prod (1.0 / distance);
00519                         lnk = log (nk);
00520                         dim = low.length();
00521                 }
00523 
00524                 double evallog (const vec &val) const  {
00525                         if (any (val < low) && any (val > high)) {return inf;}
00526                         else return lnk;
00527                 }
00528                 vec sample() const {
00529                         vec smp (dim);
00530 #pragma omp critical
00531                         UniRNG.sample_vector (dim , smp);
00532                         return low + elem_mult (distance, smp);
00533                 }
00535                 vec mean() const {return (high -low) / 2.0;}
00536                 vec variance() const {return (pow (high, 2) + pow (low, 2) + elem_mult (high, low)) / 3.0;}
00547                 void from_setting (const Setting &set) {
00548                         epdf::from_setting (set); 
00549 
00550                         UI::get (high, set, "high", UI::compulsory);
00551                         UI::get (low, set, "low", UI::compulsory);
00552                         set_parameters(low,high);
00553                         validate();
00554                 }
00555                 void validate() {
00556                         bdm_assert(high.length()==low.length(), "Incompatible high and low vectors");
00557                         dim = high.length();
00558                         bdm_assert (min (distance) > 0.0, "bad support");
00559                 }
00560 };
00561 UIREGISTER(euni);
00562 
00568 template < class sq_T, template <typename> class TEpdf = enorm >
00569 class mlnorm : public mpdf_internal< TEpdf<sq_T> >
00570 {
00571         protected:
00573                 mat A;
00575                 vec mu_const;
00576 
00577         public:
00580                 mlnorm() : mpdf_internal< TEpdf<sq_T> >() {};
00581                 mlnorm (const mat &A, const vec &mu0, const sq_T &R) : mpdf_internal< TEpdf<sq_T> >() {
00582                         set_parameters (A, mu0, R);
00583                 }
00584 
00586                 void set_parameters (const  mat &A0, const vec &mu0, const sq_T &R0) {  
00587                         this->iepdf.set_parameters (zeros (A0.rows()), R0);
00588                         A = A0;
00589                         mu_const = mu0;
00590                         this->dimc = A0.cols();
00591                 }
00594                 void condition (const vec &cond) {
00595                         this->iepdf._mu() = A * cond + mu_const;
00596 
00597                 }
00598 
00600                 const vec& _mu_const() const {return mu_const;}
00602                 const mat& _A() const {return A;}
00604                 mat _R() const { return this->iepdf._R().to_mat(); }
00605 
00607                 template<typename sq_M>
00608                 friend std::ostream &operator<< (std::ostream &os,  mlnorm<sq_M, enorm> &ml);
00609 
00620                 void from_setting (const Setting &set) {
00621                         mpdf::from_setting (set);
00622 
00623                         UI::get (A, set, "A", UI::compulsory);
00624                         UI::get (mu_const, set, "const", UI::compulsory);
00625                         mat R0;
00626                         UI::get (R0, set, "R", UI::compulsory);
00627                         set_parameters (A, mu_const, R0);
00628                         validate();
00629                 };
00630                 void validate() {
00631                         bdm_assert (A.rows() == mu_const.length(), "mlnorm: A vs. mu mismatch");
00632                         bdm_assert (A.rows() == _R().rows(), "mlnorm: A vs. R mismatch");
00633                         
00634                 }
00635 };
00636 UIREGISTER2 (mlnorm,ldmat);
00637 SHAREDPTR2 ( mlnorm, ldmat );
00638 UIREGISTER2 (mlnorm,fsqmat);
00639 SHAREDPTR2 ( mlnorm, fsqmat );
00640 UIREGISTER2 (mlnorm, chmat);
00641 SHAREDPTR2 ( mlnorm, chmat );
00642 
00644 template<class sq_T>
00645 class mgnorm : public mpdf_internal< enorm< sq_T > >
00646 {
00647         private:
00648 
00649                 shared_ptr<fnc> g;
00650 
00651         public:
00653                 mgnorm() : mpdf_internal<enorm<sq_T> >() { }
00655                 inline void set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0);
00656                 inline void condition (const vec &cond);
00657 
00658 
00677                 void from_setting (const Setting &set) {
00678                         mpdf::from_setting(set);
00679                         shared_ptr<fnc> g = UI::build<fnc> (set, "g", UI::compulsory);
00680 
00681                         mat R;
00682                         vec dR;
00683                         if (UI::get (dR, set, "dR"))
00684                                 R = diag (dR);
00685                         else
00686                                 UI::get (R, set, "R", UI::compulsory);
00687 
00688                         set_parameters (g, R);
00689                         validate();
00690                 }
00691                 void validate() {
00692                         bdm_assert(g->dimension()==this->dimension(),"incompatible function");
00693                 }
00694 };
00695 
00696 UIREGISTER2 (mgnorm, chmat);
00697 SHAREDPTR2 ( mgnorm, chmat );
00698 
00699 
00707 class mlstudent : public mlnorm<ldmat, enorm>
00708 {
00709         protected:
00711                 ldmat Lambda;
00713                 ldmat &_R;
00715                 ldmat Re;
00716         public:
00717                 mlstudent () : mlnorm<ldmat, enorm> (),
00718                                 Lambda (),      _R (iepdf._R()) {}
00720                 void set_parameters (const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00721                         iepdf.set_parameters (mu0, R0);
00722                         A = A0;
00723                         mu_const = mu0;
00724                         Re = R0;
00725                         Lambda = Lambda0;
00726                 }
00727                 void condition (const vec &cond) {
00728                         iepdf._mu() = A * cond + mu_const;
00729                         double zeta;
00730                         
00731                         if ( (cond.length() + 1) == Lambda.rows()) {
00732                                 zeta = Lambda.invqform (concat (cond, vec_1 (1.0)));
00733                         } else {
00734                                 zeta = Lambda.invqform (cond);
00735                         }
00736                         _R = Re;
00737                         _R *= (1 + zeta);
00738                 };
00739 
00740                 void validate() {
00741                         bdm_assert (A.rows() == mu_const.length(), "mlstudent: A vs. mu mismatch");
00742                         bdm_assert (_R.rows() == A.rows(), "mlstudent: A vs. R mismatch");
00743                         
00744                 }
00745 };
00755 class mgamma : public mpdf_internal<egamma>
00756 {
00757         protected:
00758 
00760                 double k;
00761 
00763                 vec &_beta;
00764 
00765         public:
00767                 mgamma() : mpdf_internal<egamma>(), k (0),
00768                                 _beta (iepdf._beta()) {
00769                 }
00770 
00772                 void set_parameters (double k, const vec &beta0);
00773 
00774                 void condition (const vec &val) {_beta = k / val;};
00786                 void from_setting (const Setting &set) {
00787                         mpdf::from_setting (set); 
00788                         vec betatmp; 
00789                         UI::get (betatmp, set, "beta", UI::compulsory);
00790                         UI::get (k, set, "k", UI::compulsory);
00791                         set_parameters (k, betatmp);
00792                 }
00793 };
00794 UIREGISTER (mgamma);
00795 SHAREDPTR (mgamma);
00796 
00806 class migamma : public mpdf_internal<eigamma>
00807 {
00808         protected:
00810                 double k;
00811 
00813                 vec &_alpha;
00814 
00816                 vec &_beta;
00817 
00818         public:
00821                 migamma() : mpdf_internal<eigamma>(),
00822                                 k (0),
00823                                 _alpha (iepdf._alpha()),
00824                                 _beta (iepdf._beta()) {
00825                 }
00826 
00827                 migamma (const migamma &m) : mpdf_internal<eigamma>(),
00828                                 k (0),
00829                                 _alpha (iepdf._alpha()),
00830                                 _beta (iepdf._beta()) {
00831                 }
00833 
00835                 void set_parameters (int len, double k0) {
00836                         k = k0;
00837                         iepdf.set_parameters ( (1.0 / (k*k) + 2.0) *ones (len) , ones (len) );
00838                         dimc = dimension();
00839                 };
00840                 void condition (const vec &val) {
00841                         _beta = elem_mult (val, (_alpha - 1.0));
00842                 };
00843 };
00844 
00845 
00857 class mgamma_fix : public mgamma
00858 {
00859         protected:
00861                 double l;
00863                 vec refl;
00864         public:
00866                 mgamma_fix () : mgamma (), refl () {};
00868                 void set_parameters (double k0 , vec ref0, double l0) {
00869                         mgamma::set_parameters (k0, ref0);
00870                         refl = pow (ref0, 1.0 - l0);l = l0;
00871                         dimc = dimension();
00872                 };
00873 
00874                 void condition (const vec &val) {vec mean = elem_mult (refl, pow (val, l)); _beta = k / mean;};
00875 };
00876 
00877 
00890 class migamma_ref : public migamma
00891 {
00892         protected:
00894                 double l;
00896                 vec refl;
00897         public:
00899                 migamma_ref () : migamma (), refl () {};
00901                 void set_parameters (double k0 , vec ref0, double l0) {
00902                         migamma::set_parameters (ref0.length(), k0);
00903                         refl = pow (ref0, 1.0 - l0);
00904                         l = l0;
00905                         dimc = dimension();
00906                 };
00907 
00908                 void condition (const vec &val) {
00909                         vec mean = elem_mult (refl, pow (val, l));
00910                         migamma::condition (mean);
00911                 };
00912 
00913 
00926                 void from_setting (const Setting &set);
00927 
00928                 
00929 };
00930 
00931 
00932 UIREGISTER (migamma_ref);
00933 SHAREDPTR (migamma_ref);
00934 
00945 class elognorm: public enorm<ldmat>
00946 {
00947         public:
00948                 vec sample() const {return exp (enorm<ldmat>::sample());};
00949                 vec mean() const {vec var = enorm<ldmat>::variance();return exp (mu - 0.5*var);};
00950 
00951 };
00952 
00959 class mlognorm : public mpdf_internal<elognorm>
00960 {
00961         protected:
00963                 double sig2;
00964 
00966                 vec μ
00967         public:
00969                 mlognorm() : mpdf_internal<elognorm>(),
00970                                 sig2 (0),
00971                                 mu (iepdf._mu()) {
00972                 }
00973 
00975                 void set_parameters (int size, double k) {
00976                         sig2 = 0.5 * log (k * k + 1);
00977                         iepdf.set_parameters (zeros (size), 2*sig2*eye (size));
00978 
00979                         dimc = size;
00980                 };
00981 
00982                 void condition (const vec &val) {
00983                         mu = log (val) - sig2;
00984                 };
00985 
00997                 void from_setting (const Setting &set);
00998 
00999                 
01000 
01001 };
01002 
01003 UIREGISTER (mlognorm);
01004 SHAREDPTR (mlognorm);
01005 
01009 class eWishartCh : public epdf
01010 {
01011         protected:
01013                 chmat Y;
01015                 int p;
01017                 double delta;
01018         public:
01020                 void set_parameters (const mat &Y0, const double delta0) {Y = chmat (Y0);delta = delta0; p = Y.rows(); dim = p * p; }
01022                 mat sample_mat() const {
01023                         mat X = zeros (p, p);
01024 
01025                         
01026                         for (int i = 0;i < p;i++) {
01027                                 GamRNG.setup (0.5* (delta - i) , 0.5);   
01028 #pragma omp critical
01029                                 X (i, i) = sqrt (GamRNG());
01030                         }
01031                         
01032                         for (int i = 0;i < p;i++) {
01033                                 for (int j = i + 1;j < p;j++) {
01034 #pragma omp critical
01035                                         X (i, j) = NorRNG.sample();
01036                                 }
01037                         }
01038                         return X*Y._Ch();
01039                 }
01040                 vec sample () const {
01041                         return vec (sample_mat()._data(), p*p);
01042                 }
01044                 void setY (const mat &Ch0) {copy_vector (dim, Ch0._data(), Y._Ch()._data());}
01046                 void _setY (const vec &ch0) {copy_vector (dim, ch0._data(), Y._Ch()._data()); }
01048                 const chmat& getY() const {return Y;}
01049 };
01050 
01052 
01054 class eiWishartCh: public epdf
01055 {
01056         protected:
01058                 eWishartCh W;
01060                 int p;
01062                 double delta;
01063         public:
01065                 void set_parameters (const mat &Y0, const double delta0) {
01066                         delta = delta0;
01067                         W.set_parameters (inv (Y0), delta0);
01068                         dim = W.dimension(); p = Y0.rows();
01069                 }
01070                 vec sample() const {mat iCh; iCh = inv (W.sample_mat()); return vec (iCh._data(), dim);}
01072                 void _setY (const vec &y0) {
01073                         mat Ch (p, p);
01074                         mat iCh (p, p);
01075                         copy_vector (dim, y0._data(), Ch._data());
01076 
01077                         iCh = inv (Ch);
01078                         W.setY (iCh);
01079                 }
01080                 virtual double evallog (const vec &val) const {
01081                         chmat X (p);
01082                         const chmat& Y = W.getY();
01083 
01084                         copy_vector (p*p, val._data(), X._Ch()._data());
01085                         chmat iX (p);X.inv (iX);
01086                         
01087 
01088                         mat M = Y.to_mat() * iX.to_mat();
01089 
01090                         double log1 = 0.5 * p * (2 * Y.logdet()) - 0.5 * (delta + p + 1) * (2 * X.logdet()) - 0.5 * trace (M);
01091                         
01092 
01093                         
01094 
01095 
01096 
01097 
01098 
01099 
01100                         return log1;
01101                 };
01102 
01103 };
01104 
01106 class rwiWishartCh : public mpdf_internal<eiWishartCh>
01107 {
01108         protected:
01110                 double sqd;
01112                 vec refl;
01114                 double l;
01116                 int p;
01117 
01118         public:
01119                 rwiWishartCh() : sqd (0), l (0), p (0) {}
01121                 void set_parameters (int p0, double k, vec ref0, double l0) {
01122                         p = p0;
01123                         double delta = 2 / (k * k) + p + 3;
01124                         sqd = sqrt (delta - p - 1);
01125                         l = l0;
01126                         refl = pow (ref0, 1 - l);
01127 
01128                         iepdf.set_parameters (eye (p), delta);
01129                         dimc = iepdf.dimension();
01130                 }
01131                 void condition (const vec &c) {
01132                         vec z = c;
01133                         int ri = 0;
01134                         for (int i = 0;i < p*p;i += (p + 1)) {
01135                                 z (i) = pow (z (i), l) * refl (ri);
01136                                 ri++;
01137                         }
01138 
01139                         iepdf._setY (sqd*z);
01140                 }
01141 };
01142 
01144 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
01150 class eEmp: public epdf
01151 {
01152         protected :
01154                 int n;
01156                 vec w;
01158                 Array<vec> samples;
01159         public:
01162                 eEmp () : epdf (), w (), samples () {};
01164                 eEmp (const eEmp &e) : epdf (e), w (e.w), samples (e.samples) {};
01166 
01168                 void set_statistics (const vec &w0, const epdf &pdf0);
01170                 void set_statistics (const epdf &pdf0 , int n) {set_statistics (ones (n) / n, pdf0);};
01172                 void set_samples (const epdf* pdf0);
01174                 void set_parameters (int n0, bool copy = true) {n = n0; w.set_size (n0, copy);samples.set_size (n0, copy);};
01176                 void set_parameters (const Array<vec> &Av) {
01177                         bdm_assert(Av.size()>0,"Empty samples"); 
01178                         n = Av.size(); 
01179                         epdf::set_parameters(Av(0).length());
01180                         w=1/n*ones(n);
01181                         samples=Av;
01182                 };
01184                 vec& _w()  {return w;};
01186                 const vec& _w() const {return w;};
01188                 Array<vec>& _samples() {return samples;};
01190                 const Array<vec>& _samples() const {return samples;};
01192                 ivec resample (RESAMPLING_METHOD method = SYSTEMATIC);
01193 
01195                 vec sample() const {
01196                         bdm_error ("Not implemented");
01197                         return vec();
01198                 }
01199 
01201                 double evallog (const vec &val) const {
01202                         bdm_error ("Not implemented");
01203                         return 0.0;
01204                 }
01205 
01206                 vec mean() const {
01207                         vec pom = zeros (dim);
01208                         for (int i = 0;i < n;i++) {pom += samples (i) * w (i);}
01209                         return pom;
01210                 }
01211                 vec variance() const {
01212                         vec pom = zeros (dim);
01213                         for (int i = 0;i < n;i++) {pom += pow (samples (i), 2) * w (i);}
01214                         return pom -pow (mean(), 2);
01215                 }
01217                 void qbounds (vec &lb, vec &ub, double perc = 0.95) const {
01218                         
01219                         lb.set_size (dim);
01220                         ub.set_size (dim);
01221                         lb = std::numeric_limits<double>::infinity();
01222                         ub = -std::numeric_limits<double>::infinity();
01223                         int j;
01224                         for (int i = 0;i < n;i++) {
01225                                 for (j = 0;j < dim; j++) {
01226                                         if (samples (i) (j) < lb (j)) {lb (j) = samples (i) (j);}
01227                                         if (samples (i) (j) > ub (j)) {ub (j) = samples (i) (j);}
01228                                 }
01229                         }
01230                 }
01231 };
01232 
01233 
01235 
01236 template<class sq_T>
01237 void enorm<sq_T>::set_parameters (const vec &mu0, const sq_T &R0)
01238 {
01239 
01240         mu = mu0;
01241         R = R0;
01242         validate();
01243 };
01244 
01245 template<class sq_T>
01246 void enorm<sq_T>::from_setting (const Setting &set)
01247 {
01248         epdf::from_setting (set); 
01249 
01250         UI::get (mu, set, "mu", UI::compulsory);
01251         mat Rtmp;
01252         UI::get (Rtmp, set, "R", UI::compulsory);
01253         R = Rtmp; 
01254         validate();
01255 }
01256 
01257 template<class sq_T>
01258 void enorm<sq_T>::dupdate (mat &v, double nu)
01259 {
01260         
01261 };
01262 
01263 
01264 
01265 
01266 
01267 
01268 template<class sq_T>
01269 vec enorm<sq_T>::sample() const
01270 {
01271         vec x (dim);
01272 #pragma omp critical
01273         NorRNG.sample_vector (dim, x);
01274         vec smp = R.sqrt_mult (x);
01275 
01276         smp += mu;
01277         return smp;
01278 };
01279 
01280 
01281 
01282 
01283 
01284 
01285 
01286 
01287 
01288 template<class sq_T>
01289 double enorm<sq_T>::evallog_nn (const vec &val) const
01290 {
01291         
01292         double tmp = -0.5 * (R.invqform (mu - val));
01293         return  tmp;
01294 };
01295 
01296 template<class sq_T>
01297 inline double enorm<sq_T>::lognc () const
01298 {
01299         
01300         double tmp = 0.5 * (R.cols() * 1.83787706640935 + R.logdet());
01301         return tmp;
01302 };
01303 
01304 
01305 
01306 
01307 
01308 
01309 
01310 
01311 
01312 
01313 
01314 
01315 
01316 
01317 
01318 
01319 
01320 
01321 
01322 
01323 
01324 
01325 
01326 
01327 
01328 
01329 
01330 
01331 template<class sq_T>
01332 shared_ptr<epdf> enorm<sq_T>::marginal ( const RV &rvn ) const
01333 {
01334         enorm<sq_T> *tmp = new enorm<sq_T> ();
01335         shared_ptr<epdf> narrow(tmp);
01336         marginal ( rvn, *tmp );
01337         return narrow;
01338 }
01339 
01340 template<class sq_T>
01341 void enorm<sq_T>::marginal ( const RV &rvn, enorm<sq_T> &target ) const
01342 {
01343         bdm_assert (isnamed(), "rv description is not assigned");
01344         ivec irvn = rvn.dataind (rv);
01345 
01346         sq_T Rn (R, irvn);  
01347 
01348         target.set_rv ( rvn );
01349         target.set_parameters (mu (irvn), Rn);
01350 }
01351 
01352 template<class sq_T>
01353 shared_ptr<mpdf> enorm<sq_T>::condition ( const RV &rvn ) const
01354 {
01355         mlnorm<sq_T> *tmp = new mlnorm<sq_T> ();
01356         shared_ptr<mpdf> narrow(tmp);
01357         condition ( rvn, *tmp );
01358         return narrow;
01359 }
01360 
01361 template<class sq_T>
01362 void enorm<sq_T>::condition ( const RV &rvn, mpdf &target ) const
01363 {
01364         typedef mlnorm<sq_T> TMlnorm;
01365 
01366         bdm_assert (isnamed(), "rvs are not assigned");
01367         TMlnorm &uptarget = dynamic_cast<TMlnorm &>(target);
01368 
01369         RV rvc = rv.subt (rvn);
01370         bdm_assert ( (rvc._dsize() + rvn._dsize() == rv._dsize()), "wrong rvn");
01371         
01372         ivec irvn = rvn.dataind (rv);
01373         ivec irvc = rvc.dataind (rv);
01374         ivec perm = concat (irvn , irvc);
01375         sq_T Rn (R, perm);
01376 
01377         
01378         mat S = Rn.to_mat();
01379         
01380         int n = rvn._dsize() - 1;
01381         int end = R.rows() - 1;
01382         mat S11 = S.get (0, n, 0, n);
01383         mat S12 = S.get (0, n , rvn._dsize(), end);
01384         mat S22 = S.get (rvn._dsize(), end, rvn._dsize(), end);
01385 
01386         vec mu1 = mu (irvn);
01387         vec mu2 = mu (irvc);
01388         mat A = S12 * inv (S22);
01389         sq_T R_n (S11 - A *S12.T());
01390 
01391         uptarget.set_rv (rvn);
01392         uptarget.set_rvc (rvc);
01393         uptarget.set_parameters (A, mu1 - A*mu2, R_n);
01394 }
01395 
01398 template<class sq_T>
01399 void mgnorm<sq_T >::set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0) {
01400         g = g0;
01401         this->iepdf.set_parameters (zeros (g->dimension()), R0);
01402 }
01403 
01404 template<class sq_T>
01405 void mgnorm<sq_T >::condition (const vec &cond) {this->iepdf._mu() = g->eval (cond);};
01406 
01408 template<class sq_T>
01409 std::ostream &operator<< (std::ostream &os,  mlnorm<sq_T> &ml)
01410 {
01411         os << "A:" << ml.A << endl;
01412         os << "mu:" << ml.mu_const << endl;
01413         os << "R:" << ml._R() << endl;
01414         return os;
01415 };
01416 
01417 }
01418 #endif //EF_H