Gauss-inverse-Wishart density stored in LD form. More...
Gauss-inverse-Wishart density stored in LD form.
For -variate densities, given rv.count() should be V.rows().
#include <exp_family.h>
Public Member Functions | |
vec | sample () const |
Returns a sample, from density . | |
vec | mean () const |
return expected value | |
vec | variance () const |
return expected variance (not covariance!) | |
vec | est_theta () const |
LS estimate of . | |
ldmat | est_theta_cov () const |
Covariance of the LS estimate. | |
void | mean_mat (mat &M, mat &R) const |
expected values of the linear coefficient and the covariance matrix are written to M and R , respectively | |
double | evallog_nn (const vec &val) const |
In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise val = [theta_1 theta_2 ... r_1 r_2 ]. | |
double | lognc () const |
logarithm of the normalizing constant, | |
void | pow (double p) |
Power of the density, used e.g. to flatten the density. | |
virtual double | evallog (const vec &val) const |
Evaluate normalized log-probability. | |
virtual vec | evallog_m (const mat &Val) const |
Evaluate normalized log-probability for many samples. | |
virtual vec | evallog_m (const Array< vec > &Val) const |
Evaluate normalized log-probability for many samples. | |
virtual string | to_string () |
This method returns a basic info about the current instance. | |
virtual void | to_setting (Setting &set) const |
This method save all the instance properties into the Setting structure. | |
virtual void | validate () |
This method TODO. | |
Constructors | |
egiw () | |
egiw (int dimx0, ldmat V0, double nu0=-1.0) | |
void | set_parameters (int dimx0, ldmat V0, double nu0=-1.0) |
Access attributes | |
ldmat & | _V () |
const ldmat & | _V () const |
double & | _nu () |
const double & | _nu () const |
void | from_setting (const Setting &set) |
Constructors | |
Construction of each epdf should support two types of constructors:
The following constructors should be supported for convenience:
All internal data structures are constructed as empty. Their values (including sizes) will be set by method | |
void | set_parameters (int dim0) |
Matematical Operations | |
virtual mat | sample_m (int N) const |
Returns N samples, from density . | |
virtual shared_ptr< mpdf > | condition (const RV &rv) const |
Return conditional density on the given RV, the remaining rvs will be in conditioning. | |
virtual shared_ptr< epdf > | marginal (const RV &rv) const |
Return marginal density on the given RV, the remainig rvs are intergrated out. | |
virtual void | qbounds (vec &lb, vec &ub, double percentage=0.95) const |
Lower and upper bounds of percentage % quantile, returns mean-2*sigma as default. | |
Connection to other classes | |
void | set_rv (const RV &rv0) |
Name its rv. | |
bool | isnamed () const |
True if rv is assigned. | |
const RV & | _rv () const |
Return name (fails when isnamed is false). | |
Access to attributes | |
int | dimension () const |
Size of the random variable. | |
Protected Attributes | |
ldmat | V |
Extended information matrix of sufficient statistics. | |
double | nu |
Number of data records (degrees of freedom) of sufficient statistics. | |
int | dimx |
Dimension of the output. | |
int | nPsi |
Dimension of the regressor. | |
int | dim |
dimension of the random variable | |
RV | rv |
Description of the random variable. |
void bdm::egiw::from_setting | ( | const Setting & | set | ) | [inline, virtual] |
Create Gauss-inverse-Wishart density
from structure
class = 'egiw'; V = []; // square matrix nu = []; // scalar \nu ((almost) degrees of freedom) // when missing, it will be computed to obtain proper pdf dimx = []; // dimension of the wishart part rv = RV({'name'}) // description of RV rvc = RV({'name'}) // description of RV in condition
Reimplemented from bdm::epdf.
References dimx, bdm::UI::get(), nu, and V.