00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 
00017 #include "../shared_ptr.h"
00018 #include "../base/bdmbase.h"
00019 #include "../math/chmat.h"
00020 
00021 namespace bdm
00022 {
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf
00039 {
00040         public:
00041 
00043                 eEF () : epdf () {};
00045                 virtual double lognc() const = 0;
00046 
00048                 virtual double evallog_nn (const vec &val) const {
00049                         bdm_error ("Not implemented");
00050                         return 0.0;
00051                 }
00052 
00054                 virtual double evallog (const vec &val) const {
00055                         double tmp;
00056                         tmp = evallog_nn (val) - lognc();
00057                         return tmp;
00058                 }
00060                 virtual vec evallog_m (const mat &Val) const {
00061                         vec x (Val.cols());
00062                         for (int i = 0;i < Val.cols();i++) {x (i) = evallog_nn (Val.get_col (i)) ;}
00063                         return x -lognc();
00064                 }
00066                 virtual vec evallog_m (const Array<vec> &Val) const {
00067                         vec x (Val.length());
00068                         for (int i = 0;i < Val.length();i++) {x (i) = evallog_nn (Val (i)) ;}
00069                         return x -lognc();
00070                 }
00071 
00073                 virtual void pow (double p) {
00074                         bdm_error ("Not implemented");
00075                 }
00076 };
00077 
00078 
00080 class BMEF : public BM
00081 {
00082         protected:
00084                 double frg;
00086                 double last_lognc;
00087         public:
00089                 BMEF (double frg0 = 1.0) : BM (), frg (frg0) {}
00091                 BMEF (const BMEF &B) : BM (B), frg (B.frg), last_lognc (B.last_lognc) {}
00093                 virtual void set_statistics (const BMEF* BM0) {
00094                         bdm_error ("Not implemented");
00095                 }
00096 
00098                 virtual void bayes (const vec &data, const double w) {};
00099                 
00100                 void bayes (const vec &dt);
00101 
00103                 virtual void flatten (const BMEF * B) {
00104                         bdm_error ("Not implemented");
00105                 }
00106 
00107                 BMEF* _copy_ () const {
00108                         bdm_error ("function _copy_ not implemented for this BM");
00109                         return NULL;
00110                 }
00111 };
00112 
00113 template<class sq_T, template <typename> class TEpdf>
00114 class mlnorm;
00115 
00121 template<class sq_T>
00122 class enorm : public eEF
00123 {
00124         protected:
00126                 vec mu;
00128                 sq_T R;
00129         public:
00132 
00133                 enorm () : eEF (), mu (), R () {};
00134                 enorm (const vec &mu, const sq_T &R) {set_parameters (mu, R);}
00135                 void set_parameters (const vec &mu, const sq_T &R);
00145                 void from_setting (const Setting &root);
00146                 void validate() {
00147                         bdm_assert (mu.length() == R.rows(), "mu and R parameters do not match");
00148                         dim = mu.length();
00149                 }
00151 
00154 
00156                 void dupdate (mat &v, double nu = 1.0);
00157 
00158                 vec sample() const;
00159 
00160                 double evallog_nn (const vec &val) const;
00161                 double lognc () const;
00162                 vec mean() const {return mu;}
00163                 vec variance() const {return diag (R.to_mat());}
00164 
00165                 shared_ptr<mpdf> condition ( const RV &rvn ) const;
00166 
00167                 
00168                 
00169                 
00170                 
00171                 void condition ( const RV &rvn, mpdf &target ) const;
00172 
00173                 shared_ptr<epdf> marginal (const RV &rvn ) const;
00174                 void marginal ( const RV &rvn, enorm<sq_T> &target ) const;
00176 
00179 
00180                 vec& _mu() {return mu;}
00181                 const vec& _mu() const {return mu;}
00182                 void set_mu (const vec mu0) { mu = mu0;}
00183                 sq_T& _R() {return R;}
00184                 const sq_T& _R() const {return R;}
00186 
00187 };
00188 UIREGISTER2 (enorm, chmat);
00189 SHAREDPTR2 ( enorm, chmat );
00190 UIREGISTER2 (enorm, ldmat);
00191 SHAREDPTR2 ( enorm, ldmat );
00192 UIREGISTER2 (enorm, fsqmat);
00193 SHAREDPTR2 ( enorm, fsqmat );
00194 
00195 
00202 class egiw : public eEF
00203 {
00204         protected:
00206                 ldmat V;
00208                 double nu;
00210                 int dimx;
00212                 int nPsi;
00213         public:
00216                 egiw() : eEF() {};
00217                 egiw (int dimx0, ldmat V0, double nu0 = -1.0) : eEF() {set_parameters (dimx0, V0, nu0);};
00218 
00219                 void set_parameters (int dimx0, ldmat V0, double nu0 = -1.0);
00221 
00222                 vec sample() const;
00223                 vec mean() const;
00224                 vec variance() const;
00225 
00227                 vec est_theta() const;
00228 
00230                 ldmat est_theta_cov() const;
00231 
00233                 void mean_mat (mat &M, mat&R) const;
00235                 double evallog_nn (const vec &val) const;
00236                 double lognc () const;
00237                 void pow (double p) {V *= p;nu *= p;};
00238 
00241 
00242                 ldmat& _V() {return V;}
00243                 const ldmat& _V() const {return V;}
00244                 double& _nu()  {return nu;}
00245                 const double& _nu() const {return nu;}
00260                 void from_setting (const Setting &set) {
00261                         epdf::from_setting(set);
00262                         if (!UI::get (nu, set, "nu", UI::compulsory)) {nu=-1;}
00263                         UI::get (dimx, set, "dimx", UI::compulsory);
00264                         mat V;
00265                         UI::get (V, set, "V", UI::compulsory);
00266                         set_parameters (dimx, V, nu);
00267                 }
00269 };
00270 UIREGISTER ( egiw );
00271 SHAREDPTR ( egiw );
00272 
00281 class eDirich: public eEF
00282 {
00283         protected:
00285                 vec beta;
00286         public:
00289 
00290                 eDirich () : eEF () {};
00291                 eDirich (const eDirich &D0) : eEF () {set_parameters (D0.beta);};
00292                 eDirich (const vec &beta0) {set_parameters (beta0);};
00293                 void set_parameters (const vec &beta0) {
00294                         beta = beta0;
00295                         dim = beta.length();
00296                 }
00298 
00299                 vec sample() const {
00300                         bdm_error ("Not implemented");
00301                         return vec();
00302                 }
00303 
00304                 vec mean() const {return beta / sum (beta);};
00305                 vec variance() const {double gamma = sum (beta); return elem_mult (beta, (beta + 1)) / (gamma* (gamma + 1));}
00307                 double evallog_nn (const vec &val) const {
00308                         double tmp; tmp = (beta - 1) * log (val);
00309                         return tmp;
00310                 }
00311 
00312                 double lognc () const {
00313                         double tmp;
00314                         double gam = sum (beta);
00315                         double lgb = 0.0;
00316                         for (int i = 0;i < beta.length();i++) {lgb += lgamma (beta (i));}
00317                         tmp = lgb - lgamma (gam);
00318                         return tmp;
00319                 }
00320 
00322                 vec& _beta()  {return beta;}
00324 };
00325 
00327 class multiBM : public BMEF
00328 {
00329         protected:
00331                 eDirich est;
00333                 vec β
00334         public:
00336                 multiBM () : BMEF (), est (), beta (est._beta()) {
00337                         if (beta.length() > 0) {last_lognc = est.lognc();}
00338                         else{last_lognc = 0.0;}
00339                 }
00341                 multiBM (const multiBM &B) : BMEF (B), est (B.est), beta (est._beta()) {}
00343                 void set_statistics (const BM* mB0) {const multiBM* mB = dynamic_cast<const multiBM*> (mB0); beta = mB->beta;}
00344                 void bayes (const vec &dt) {
00345                         if (frg < 1.0) {beta *= frg;last_lognc = est.lognc();}
00346                         beta += dt;
00347                         if (evalll) {ll = est.lognc() - last_lognc;}
00348                 }
00349                 double logpred (const vec &dt) const {
00350                         eDirich pred (est);
00351                         vec &beta = pred._beta();
00352 
00353                         double lll;
00354                         if (frg < 1.0)
00355                                 {beta *= frg;lll = pred.lognc();}
00356                         else
00357                                 if (evalll) {lll = last_lognc;}
00358                                 else{lll = pred.lognc();}
00359 
00360                         beta += dt;
00361                         return pred.lognc() - lll;
00362                 }
00363                 void flatten (const BMEF* B) {
00364                         const multiBM* E = dynamic_cast<const multiBM*> (B);
00365                         
00366                         const vec &Eb = E->beta;
00367                         beta *= (sum (Eb) / sum (beta));
00368                         if (evalll) {last_lognc = est.lognc();}
00369                 }
00371                 const eDirich& posterior() const {return est;};
00373                 void set_parameters (const vec &beta0) {
00374                         est.set_parameters (beta0);
00375                         if (evalll) {last_lognc = est.lognc();}
00376                 }
00377 };
00378 
00388 class egamma : public eEF
00389 {
00390         protected:
00392                 vec alpha;
00394                 vec beta;
00395         public :
00398                 egamma () : eEF (), alpha (0), beta (0) {};
00399                 egamma (const vec &a, const vec &b) {set_parameters (a, b);};
00400                 void set_parameters (const vec &a, const vec &b) {alpha = a, beta = b;dim = alpha.length();};
00402 
00403                 vec sample() const;
00404                 double evallog (const vec &val) const;
00405                 double lognc () const;
00407                 vec& _alpha() {return alpha;}
00409                 vec& _beta() {return beta;}
00410                 vec mean() const {return elem_div (alpha, beta);}
00411                 vec variance() const {return elem_div (alpha, elem_mult (beta, beta)); }
00412 
00423                 void from_setting (const Setting &set) {
00424                         epdf::from_setting (set); 
00425                         UI::get (alpha, set, "alpha", UI::compulsory);
00426                         UI::get (beta, set, "beta", UI::compulsory);
00427                         validate();
00428                 }
00429                 void validate() {
00430                         bdm_assert (alpha.length() == beta.length(), "parameters do not match");
00431                         dim = alpha.length();
00432                 }
00433 };
00434 UIREGISTER (egamma);
00435 SHAREDPTR ( egamma );
00436 
00453 class eigamma : public egamma
00454 {
00455         protected:
00456         public :
00461 
00462                 vec sample() const {return 1.0 / egamma::sample();};
00464                 vec mean() const {return elem_div (beta, alpha - 1);}
00465                 vec variance() const {vec mea = mean(); return elem_div (elem_mult (mea, mea), alpha - 2);}
00466 };
00467 
00469 
00470 
00471 
00472 
00473 
00474 
00476 
00477 
00478 
00479 
00480 
00481 
00483 
00484 class euni: public epdf
00485 {
00486         protected:
00488                 vec low;
00490                 vec high;
00492                 vec distance;
00494                 double nk;
00496                 double lnk;
00497         public:
00500                 euni () : epdf () {}
00501                 euni (const vec &low0, const vec &high0) {set_parameters (low0, high0);}
00502                 void set_parameters (const vec &low0, const vec &high0) {
00503                         distance = high0 - low0;
00504                         low = low0;
00505                         high = high0;
00506                         nk = prod (1.0 / distance);
00507                         lnk = log (nk);
00508                         dim = low.length();
00509                 }
00511 
00512                 double evallog (const vec &val) const  {
00513                         if (any (val < low) && any (val > high)) {return inf;}
00514                         else return lnk;
00515                 }
00516                 vec sample() const {
00517                         vec smp (dim);
00518 #pragma omp critical
00519                         UniRNG.sample_vector (dim , smp);
00520                         return low + elem_mult (distance, smp);
00521                 }
00523                 vec mean() const {return (high -low) / 2.0;}
00524                 vec variance() const {return (pow (high, 2) + pow (low, 2) + elem_mult (high, low)) / 3.0;}
00535                 void from_setting (const Setting &set) {
00536                         epdf::from_setting (set); 
00537 
00538                         UI::get (high, set, "high", UI::compulsory);
00539                         UI::get (low, set, "low", UI::compulsory);
00540                         set_parameters(low,high);
00541                         validate();
00542                 }
00543                 void validate() {
00544                         bdm_assert(high.length()==low.length(), "Incompatible high and low vectors");
00545                         dim = high.length();
00546                         bdm_assert (min (distance) > 0.0, "bad support");
00547                 }
00548 };
00549 UIREGISTER(euni);
00550 
00556 template < class sq_T, template <typename> class TEpdf = enorm >
00557 class mlnorm : public mpdf_internal< TEpdf<sq_T> >
00558 {
00559         protected:
00561                 mat A;
00563                 vec mu_const;
00564 
00565         public:
00568                 mlnorm() : mpdf_internal< TEpdf<sq_T> >() {};
00569                 mlnorm (const mat &A, const vec &mu0, const sq_T &R) : mpdf_internal< TEpdf<sq_T> >() {
00570                         set_parameters (A, mu0, R);
00571                 }
00572 
00574                 void set_parameters (const  mat &A0, const vec &mu0, const sq_T &R0) {  
00575                         this->iepdf.set_parameters (zeros (A0.rows()), R0);
00576                         A = A0;
00577                         mu_const = mu0;
00578                         this->dimc = A0.cols();
00579                 }
00582                 void condition (const vec &cond) {
00583                         this->iepdf._mu() = A * cond + mu_const;
00584 
00585                 }
00586 
00588                 const vec& _mu_const() const {return mu_const;}
00590                 const mat& _A() const {return A;}
00592                 mat _R() const { return this->iepdf._R().to_mat(); }
00593 
00595                 template<typename sq_M>
00596                 friend std::ostream &operator<< (std::ostream &os,  mlnorm<sq_M, enorm> &ml);
00597 
00608                 void from_setting (const Setting &set) {
00609                         mpdf::from_setting (set);
00610 
00611                         UI::get (A, set, "A", UI::compulsory);
00612                         UI::get (mu_const, set, "const", UI::compulsory);
00613                         mat R0;
00614                         UI::get (R0, set, "R", UI::compulsory);
00615                         set_parameters (A, mu_const, R0);
00616                         validate();
00617                 };
00618                 void validate() {
00619                         bdm_assert (A.rows() == mu_const.length(), "mlnorm: A vs. mu mismatch");
00620                         bdm_assert (A.rows() == _R().rows(), "mlnorm: A vs. R mismatch");
00621                         
00622                 }
00623 };
00624 UIREGISTER2 (mlnorm,ldmat);
00625 SHAREDPTR2 ( mlnorm, ldmat );
00626 UIREGISTER2 (mlnorm,fsqmat);
00627 SHAREDPTR2 ( mlnorm, fsqmat );
00628 UIREGISTER2 (mlnorm, chmat);
00629 SHAREDPTR2 ( mlnorm, chmat );
00630 
00632 template<class sq_T>
00633 class mgnorm : public mpdf_internal< enorm< sq_T > >
00634 {
00635         private:
00636 
00637                 shared_ptr<fnc> g;
00638 
00639         public:
00641                 mgnorm() : mpdf_internal<enorm<sq_T> >() { }
00643                 inline void set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0);
00644                 inline void condition (const vec &cond);
00645 
00646 
00665                 void from_setting (const Setting &set) {
00666                         mpdf::from_setting(set);
00667                         shared_ptr<fnc> g = UI::build<fnc> (set, "g", UI::compulsory);
00668 
00669                         mat R;
00670                         vec dR;
00671                         if (UI::get (dR, set, "dR"))
00672                                 R = diag (dR);
00673                         else
00674                                 UI::get (R, set, "R", UI::compulsory);
00675 
00676                         set_parameters (g, R);
00677                         validate();
00678                 }
00679                 void validate() {
00680                         bdm_assert(g->dimension()==this->dimension(),"incompatible function");
00681                 }
00682 };
00683 
00684 UIREGISTER2 (mgnorm, chmat);
00685 SHAREDPTR2 ( mgnorm, chmat );
00686 
00687 
00695 class mlstudent : public mlnorm<ldmat, enorm>
00696 {
00697         protected:
00699                 ldmat Lambda;
00701                 ldmat &_R;
00703                 ldmat Re;
00704         public:
00705                 mlstudent () : mlnorm<ldmat, enorm> (),
00706                                 Lambda (),      _R (iepdf._R()) {}
00708                 void set_parameters (const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00709                         iepdf.set_parameters (mu0, R0);
00710                         A = A0;
00711                         mu_const = mu0;
00712                         Re = R0;
00713                         Lambda = Lambda0;
00714                 }
00715                 void condition (const vec &cond) {
00716                         iepdf._mu() = A * cond + mu_const;
00717                         double zeta;
00718                         
00719                         if ( (cond.length() + 1) == Lambda.rows()) {
00720                                 zeta = Lambda.invqform (concat (cond, vec_1 (1.0)));
00721                         } else {
00722                                 zeta = Lambda.invqform (cond);
00723                         }
00724                         _R = Re;
00725                         _R *= (1 + zeta);
00726                 };
00727 
00728                 void validate() {
00729                         bdm_assert (A.rows() == mu_const.length(), "mlstudent: A vs. mu mismatch");
00730                         bdm_assert (_R.rows() == A.rows(), "mlstudent: A vs. R mismatch");
00731                         
00732                 }
00733 };
00743 class mgamma : public mpdf_internal<egamma>
00744 {
00745         protected:
00746 
00748                 double k;
00749 
00751                 vec &_beta;
00752 
00753         public:
00755                 mgamma() : mpdf_internal<egamma>(), k (0),
00756                                 _beta (iepdf._beta()) {
00757                 }
00758 
00760                 void set_parameters (double k, const vec &beta0);
00761 
00762                 void condition (const vec &val) {_beta = k / val;};
00774                 void from_setting (const Setting &set) {
00775                         mpdf::from_setting (set); 
00776                         vec betatmp; 
00777                         UI::get (betatmp, set, "beta", UI::compulsory);
00778                         UI::get (k, set, "k", UI::compulsory);
00779                         set_parameters (k, betatmp);
00780                 }
00781 };
00782 UIREGISTER (mgamma);
00783 SHAREDPTR (mgamma);
00784 
00794 class migamma : public mpdf_internal<eigamma>
00795 {
00796         protected:
00798                 double k;
00799 
00801                 vec &_alpha;
00802 
00804                 vec &_beta;
00805 
00806         public:
00809                 migamma() : mpdf_internal<eigamma>(),
00810                                 k (0),
00811                                 _alpha (iepdf._alpha()),
00812                                 _beta (iepdf._beta()) {
00813                 }
00814 
00815                 migamma (const migamma &m) : mpdf_internal<eigamma>(),
00816                                 k (0),
00817                                 _alpha (iepdf._alpha()),
00818                                 _beta (iepdf._beta()) {
00819                 }
00821 
00823                 void set_parameters (int len, double k0) {
00824                         k = k0;
00825                         iepdf.set_parameters ( (1.0 / (k*k) + 2.0) *ones (len) , ones (len) );
00826                         dimc = dimension();
00827                 };
00828                 void condition (const vec &val) {
00829                         _beta = elem_mult (val, (_alpha - 1.0));
00830                 };
00831 };
00832 
00833 
00845 class mgamma_fix : public mgamma
00846 {
00847         protected:
00849                 double l;
00851                 vec refl;
00852         public:
00854                 mgamma_fix () : mgamma (), refl () {};
00856                 void set_parameters (double k0 , vec ref0, double l0) {
00857                         mgamma::set_parameters (k0, ref0);
00858                         refl = pow (ref0, 1.0 - l0);l = l0;
00859                         dimc = dimension();
00860                 };
00861 
00862                 void condition (const vec &val) {vec mean = elem_mult (refl, pow (val, l)); _beta = k / mean;};
00863 };
00864 
00865 
00878 class migamma_ref : public migamma
00879 {
00880         protected:
00882                 double l;
00884                 vec refl;
00885         public:
00887                 migamma_ref () : migamma (), refl () {};
00889                 void set_parameters (double k0 , vec ref0, double l0) {
00890                         migamma::set_parameters (ref0.length(), k0);
00891                         refl = pow (ref0, 1.0 - l0);
00892                         l = l0;
00893                         dimc = dimension();
00894                 };
00895 
00896                 void condition (const vec &val) {
00897                         vec mean = elem_mult (refl, pow (val, l));
00898                         migamma::condition (mean);
00899                 };
00900 
00901 
00914                 void from_setting (const Setting &set);
00915 
00916                 
00917 };
00918 
00919 
00920 UIREGISTER (migamma_ref);
00921 SHAREDPTR (migamma_ref);
00922 
00933 class elognorm: public enorm<ldmat>
00934 {
00935         public:
00936                 vec sample() const {return exp (enorm<ldmat>::sample());};
00937                 vec mean() const {vec var = enorm<ldmat>::variance();return exp (mu - 0.5*var);};
00938 
00939 };
00940 
00947 class mlognorm : public mpdf_internal<elognorm>
00948 {
00949         protected:
00951                 double sig2;
00952 
00954                 vec μ
00955         public:
00957                 mlognorm() : mpdf_internal<elognorm>(),
00958                                 sig2 (0),
00959                                 mu (iepdf._mu()) {
00960                 }
00961 
00963                 void set_parameters (int size, double k) {
00964                         sig2 = 0.5 * log (k * k + 1);
00965                         iepdf.set_parameters (zeros (size), 2*sig2*eye (size));
00966 
00967                         dimc = size;
00968                 };
00969 
00970                 void condition (const vec &val) {
00971                         mu = log (val) - sig2;
00972                 };
00973 
00985                 void from_setting (const Setting &set);
00986 
00987                 
00988 
00989 };
00990 
00991 UIREGISTER (mlognorm);
00992 SHAREDPTR (mlognorm);
00993 
00997 class eWishartCh : public epdf
00998 {
00999         protected:
01001                 chmat Y;
01003                 int p;
01005                 double delta;
01006         public:
01008                 void set_parameters (const mat &Y0, const double delta0) {Y = chmat (Y0);delta = delta0; p = Y.rows(); dim = p * p; }
01010                 mat sample_mat() const {
01011                         mat X = zeros (p, p);
01012 
01013                         
01014                         for (int i = 0;i < p;i++) {
01015                                 GamRNG.setup (0.5* (delta - i) , 0.5);   
01016 #pragma omp critical
01017                                 X (i, i) = sqrt (GamRNG());
01018                         }
01019                         
01020                         for (int i = 0;i < p;i++) {
01021                                 for (int j = i + 1;j < p;j++) {
01022 #pragma omp critical
01023                                         X (i, j) = NorRNG.sample();
01024                                 }
01025                         }
01026                         return X*Y._Ch();
01027                 }
01028                 vec sample () const {
01029                         return vec (sample_mat()._data(), p*p);
01030                 }
01032                 void setY (const mat &Ch0) {copy_vector (dim, Ch0._data(), Y._Ch()._data());}
01034                 void _setY (const vec &ch0) {copy_vector (dim, ch0._data(), Y._Ch()._data()); }
01036                 const chmat& getY() const {return Y;}
01037 };
01038 
01040 
01042 class eiWishartCh: public epdf
01043 {
01044         protected:
01046                 eWishartCh W;
01048                 int p;
01050                 double delta;
01051         public:
01053                 void set_parameters (const mat &Y0, const double delta0) {
01054                         delta = delta0;
01055                         W.set_parameters (inv (Y0), delta0);
01056                         dim = W.dimension(); p = Y0.rows();
01057                 }
01058                 vec sample() const {mat iCh; iCh = inv (W.sample_mat()); return vec (iCh._data(), dim);}
01060                 void _setY (const vec &y0) {
01061                         mat Ch (p, p);
01062                         mat iCh (p, p);
01063                         copy_vector (dim, y0._data(), Ch._data());
01064 
01065                         iCh = inv (Ch);
01066                         W.setY (iCh);
01067                 }
01068                 virtual double evallog (const vec &val) const {
01069                         chmat X (p);
01070                         const chmat& Y = W.getY();
01071 
01072                         copy_vector (p*p, val._data(), X._Ch()._data());
01073                         chmat iX (p);X.inv (iX);
01074                         
01075 
01076                         mat M = Y.to_mat() * iX.to_mat();
01077 
01078                         double log1 = 0.5 * p * (2 * Y.logdet()) - 0.5 * (delta + p + 1) * (2 * X.logdet()) - 0.5 * trace (M);
01079                         
01080 
01081                         
01082 
01083 
01084 
01085 
01086 
01087 
01088                         return log1;
01089                 };
01090 
01091 };
01092 
01094 class rwiWishartCh : public mpdf_internal<eiWishartCh>
01095 {
01096         protected:
01098                 double sqd;
01100                 vec refl;
01102                 double l;
01104                 int p;
01105 
01106         public:
01107                 rwiWishartCh() : sqd (0), l (0), p (0) {}
01109                 void set_parameters (int p0, double k, vec ref0, double l0) {
01110                         p = p0;
01111                         double delta = 2 / (k * k) + p + 3;
01112                         sqd = sqrt (delta - p - 1);
01113                         l = l0;
01114                         refl = pow (ref0, 1 - l);
01115 
01116                         iepdf.set_parameters (eye (p), delta);
01117                         dimc = iepdf.dimension();
01118                 }
01119                 void condition (const vec &c) {
01120                         vec z = c;
01121                         int ri = 0;
01122                         for (int i = 0;i < p*p;i += (p + 1)) {
01123                                 z (i) = pow (z (i), l) * refl (ri);
01124                                 ri++;
01125                         }
01126 
01127                         iepdf._setY (sqd*z);
01128                 }
01129 };
01130 
01132 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
01138 class eEmp: public epdf
01139 {
01140         protected :
01142                 int n;
01144                 vec w;
01146                 Array<vec> samples;
01147         public:
01150                 eEmp () : epdf (), w (), samples () {};
01152                 eEmp (const eEmp &e) : epdf (e), w (e.w), samples (e.samples) {};
01154 
01156                 void set_statistics (const vec &w0, const epdf &pdf0);
01158                 void set_statistics (const epdf &pdf0 , int n) {set_statistics (ones (n) / n, pdf0);};
01160                 void set_samples (const epdf* pdf0);
01162                 void set_parameters (int n0, bool copy = true) {n = n0; w.set_size (n0, copy);samples.set_size (n0, copy);};
01164                 void set_parameters (const Array<vec> &Av) {
01165                         bdm_assert(Av.size()>0,"Empty samples"); 
01166                         n = Av.size(); 
01167                         epdf::set_parameters(Av(0).length());
01168                         w=1/n*ones(n);
01169                         samples=Av;
01170                 };
01172                 vec& _w()  {return w;};
01174                 const vec& _w() const {return w;};
01176                 Array<vec>& _samples() {return samples;};
01178                 const Array<vec>& _samples() const {return samples;};
01180                 ivec resample (RESAMPLING_METHOD method = SYSTEMATIC);
01181 
01183                 vec sample() const {
01184                         bdm_error ("Not implemented");
01185                         return vec();
01186                 }
01187 
01189                 double evallog (const vec &val) const {
01190                         bdm_error ("Not implemented");
01191                         return 0.0;
01192                 }
01193 
01194                 vec mean() const {
01195                         vec pom = zeros (dim);
01196                         for (int i = 0;i < n;i++) {pom += samples (i) * w (i);}
01197                         return pom;
01198                 }
01199                 vec variance() const {
01200                         vec pom = zeros (dim);
01201                         for (int i = 0;i < n;i++) {pom += pow (samples (i), 2) * w (i);}
01202                         return pom -pow (mean(), 2);
01203                 }
01205                 void qbounds (vec &lb, vec &ub, double perc = 0.95) const {
01206                         
01207                         lb.set_size (dim);
01208                         ub.set_size (dim);
01209                         lb = std::numeric_limits<double>::infinity();
01210                         ub = -std::numeric_limits<double>::infinity();
01211                         int j;
01212                         for (int i = 0;i < n;i++) {
01213                                 for (j = 0;j < dim; j++) {
01214                                         if (samples (i) (j) < lb (j)) {lb (j) = samples (i) (j);}
01215                                         if (samples (i) (j) > ub (j)) {ub (j) = samples (i) (j);}
01216                                 }
01217                         }
01218                 }
01219 };
01220 
01221 
01223 
01224 template<class sq_T>
01225 void enorm<sq_T>::set_parameters (const vec &mu0, const sq_T &R0)
01226 {
01227 
01228         mu = mu0;
01229         R = R0;
01230         validate();
01231 };
01232 
01233 template<class sq_T>
01234 void enorm<sq_T>::from_setting (const Setting &set)
01235 {
01236         epdf::from_setting (set); 
01237 
01238         UI::get (mu, set, "mu", UI::compulsory);
01239         mat Rtmp;
01240         UI::get (Rtmp, set, "R", UI::compulsory);
01241         R = Rtmp; 
01242         validate();
01243 }
01244 
01245 template<class sq_T>
01246 void enorm<sq_T>::dupdate (mat &v, double nu)
01247 {
01248         
01249 };
01250 
01251 
01252 
01253 
01254 
01255 
01256 template<class sq_T>
01257 vec enorm<sq_T>::sample() const
01258 {
01259         vec x (dim);
01260 #pragma omp critical
01261         NorRNG.sample_vector (dim, x);
01262         vec smp = R.sqrt_mult (x);
01263 
01264         smp += mu;
01265         return smp;
01266 };
01267 
01268 
01269 
01270 
01271 
01272 
01273 
01274 
01275 
01276 template<class sq_T>
01277 double enorm<sq_T>::evallog_nn (const vec &val) const
01278 {
01279         
01280         double tmp = -0.5 * (R.invqform (mu - val));
01281         return  tmp;
01282 };
01283 
01284 template<class sq_T>
01285 inline double enorm<sq_T>::lognc () const
01286 {
01287         
01288         double tmp = 0.5 * (R.cols() * 1.83787706640935 + R.logdet());
01289         return tmp;
01290 };
01291 
01292 
01293 
01294 
01295 
01296 
01297 
01298 
01299 
01300 
01301 
01302 
01303 
01304 
01305 
01306 
01307 
01308 
01309 
01310 
01311 
01312 
01313 
01314 
01315 
01316 
01317 
01318 
01319 template<class sq_T>
01320 shared_ptr<epdf> enorm<sq_T>::marginal ( const RV &rvn ) const
01321 {
01322         enorm<sq_T> *tmp = new enorm<sq_T> ();
01323         shared_ptr<epdf> narrow(tmp);
01324         marginal ( rvn, *tmp );
01325         return narrow;
01326 }
01327 
01328 template<class sq_T>
01329 void enorm<sq_T>::marginal ( const RV &rvn, enorm<sq_T> &target ) const
01330 {
01331         bdm_assert (isnamed(), "rv description is not assigned");
01332         ivec irvn = rvn.dataind (rv);
01333 
01334         sq_T Rn (R, irvn);  
01335 
01336         target.set_rv ( rvn );
01337         target.set_parameters (mu (irvn), Rn);
01338 }
01339 
01340 template<class sq_T>
01341 shared_ptr<mpdf> enorm<sq_T>::condition ( const RV &rvn ) const
01342 {
01343         mlnorm<sq_T> *tmp = new mlnorm<sq_T> ();
01344         shared_ptr<mpdf> narrow(tmp);
01345         condition ( rvn, *tmp );
01346         return narrow;
01347 }
01348 
01349 template<class sq_T>
01350 void enorm<sq_T>::condition ( const RV &rvn, mpdf &target ) const
01351 {
01352         typedef mlnorm<sq_T> TMlnorm;
01353 
01354         bdm_assert (isnamed(), "rvs are not assigned");
01355         TMlnorm &uptarget = dynamic_cast<TMlnorm &>(target);
01356 
01357         RV rvc = rv.subt (rvn);
01358         bdm_assert ( (rvc._dsize() + rvn._dsize() == rv._dsize()), "wrong rvn");
01359         
01360         ivec irvn = rvn.dataind (rv);
01361         ivec irvc = rvc.dataind (rv);
01362         ivec perm = concat (irvn , irvc);
01363         sq_T Rn (R, perm);
01364 
01365         
01366         mat S = Rn.to_mat();
01367         
01368         int n = rvn._dsize() - 1;
01369         int end = R.rows() - 1;
01370         mat S11 = S.get (0, n, 0, n);
01371         mat S12 = S.get (0, n , rvn._dsize(), end);
01372         mat S22 = S.get (rvn._dsize(), end, rvn._dsize(), end);
01373 
01374         vec mu1 = mu (irvn);
01375         vec mu2 = mu (irvc);
01376         mat A = S12 * inv (S22);
01377         sq_T R_n (S11 - A *S12.T());
01378 
01379         uptarget.set_rv (rvn);
01380         uptarget.set_rvc (rvc);
01381         uptarget.set_parameters (A, mu1 - A*mu2, R_n);
01382 }
01383 
01386 template<class sq_T>
01387 void mgnorm<sq_T >::set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0) {
01388         g = g0;
01389         this->iepdf.set_parameters (zeros (g->dimension()), R0);
01390 }
01391 
01392 template<class sq_T>
01393 void mgnorm<sq_T >::condition (const vec &cond) {this->iepdf._mu() = g->eval (cond);};
01394 
01396 template<class sq_T>
01397 std::ostream &operator<< (std::ostream &os,  mlnorm<sq_T> &ml)
01398 {
01399         os << "A:" << ml.A << endl;
01400         os << "mu:" << ml.mu_const << endl;
01401         os << "R:" << ml._R() << endl;
01402         return os;
01403 };
01404 
01405 }
01406 #endif //EF_H