(Approximate) Student t density with linear function of mean value
The internal epdf of this class is of the type of a Gaussian (enorm). However, each conditioning is trying to assure the best possible approximation by taking into account the zeta function. See [] for reference.
Perhaps a moment-matching technique?
#include <exp_family.h>
Public Member Functions | |
| void | set_parameters (const mat &A0, const vec &mu0, const ldmat &R0, const ldmat &Lambda0) | 
| constructor function  | |
| void | condition (const vec &cond) | 
| void | validate () | 
| This method TODO.  | |
| const vec & | _mu_const () const | 
| access function  | |
| const mat & | _A () const | 
| access function  | |
| mat | _R () const | 
| access function  | |
| void | from_setting (const Setting &set) | 
| enorm< ldmat > & | e () | 
| access function to iepdf  | |
| vec | samplecond (const vec &cond) | 
Reimplements samplecond using condition().  | |
| double | evallogcond (const vec &val, const vec &cond) | 
Reimplements evallogcond using condition().  | |
| virtual vec | evallogcond_m (const mat &Dt, const vec &cond) | 
| Efficient version of evallogcond for matrices.  | |
| virtual vec | evallogcond_m (const Array< vec > &Dt, const vec &cond) | 
| Efficient version of evallogcond for Array<vec>.  | |
| virtual mat | samplecond_m (const vec &cond, int N) | 
| Efficient version of samplecond.  | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance.  | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure.  | |
Constructors  | |
| void | set_parameters (const mat &A0, const vec &mu0, const ldmat &R0) | 
Set A and R.  | |
Access to attributes  | |
| const RV & | _rv () const | 
| const RV & | _rvc () const | 
| int | dimension () const | 
| int | dimensionc () | 
Connection to other objects  | |
| void | set_rvc (const RV &rvc0) | 
| void | set_rv (const RV &rv0) | 
| bool | isnamed () | 
Protected Member Functions | |
| void | set_ep (epdf &iepdf) | 
set internal pointer ep to point to given iepdf  | |
| void | set_ep (epdf *iepdfp) | 
set internal pointer ep to point to given iepdf  | |
Protected Attributes | |
| ldmat | Lambda | 
Variable   from theory.  | |
| ldmat & | _R | 
Reference to variable  .  | |
| ldmat | Re | 
Variable  .  | |
| mat | A | 
Internal epdf that arise by conditioning on rvc.  | |
| vec | mu_const | 
| Constant additive term.  | |
| enorm< ldmat > | iepdf | 
| Internal epdf used for sampling.  | |
| int | dimc | 
| dimension of the condition  | |
| RV | rvc | 
| random variable in condition  | |
Friends | |
| std::ostream & | operator<< (std::ostream &os, mlnorm< sq_M, enorm > &ml) | 
| Debug stream.  | |
| void bdm::mlstudent::condition | ( | const vec & | cond | ) |  [inline, virtual] | 
        
Set value of rvc . Result of this operation is stored in epdf use function _ep to access it. 
Reimplemented from bdm::mlnorm< ldmat, enorm >.
References bdm::mlnorm< ldmat, enorm >::_R(), bdm::mlnorm< ldmat, enorm >::A, bdm::mpdf_internal< enorm< ldmat > >::iepdf, bdm::ldmat::invqform(), Lambda, bdm::mlnorm< ldmat, enorm >::mu_const, Re, and bdm::sqmat::rows().
| void bdm::mlnorm< ldmat , enorm >::from_setting | ( | const Setting & | set | ) |  [inline, virtual, inherited] | 
        
Create Normal density with linear function of mean value
from structure
class = 'mlnorm<ldmat>', (OR) 'mlnorm<chmat>', (OR) 'mlnorm<fsqmat>'; A = []; // matrix or vector of appropriate dimension const = []; // vector of constant term R = []; // square matrix of appropriate dimension
Reimplemented from bdm::mpdf.
 1.6.1