Gaussian density with positive definite (decomposed) covariance matrix. More...
Gaussian density with positive definite (decomposed) covariance matrix.
More?...
#include <exp_family.h>
| Public Member Functions | |
| virtual double | evallog (const vec &val) const | 
| Evaluate normalized log-probability. | |
| virtual vec | evallog_m (const mat &Val) const | 
| Evaluate normalized log-probability for many samples. | |
| virtual vec | evallog_m (const Array< vec > &Val) const | 
| Evaluate normalized log-probability for many samples. | |
| virtual void | pow (double p) | 
| Power of the density, used e.g. to flatten the density. | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance. | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure. | |
| Constructors | |
| enorm () | |
| enorm (const vec &mu, const sq_T &R) | |
| void | set_parameters (const vec &mu, const sq_T &R) | 
| void | from_setting (const Setting &root) | 
| void | validate () | 
| This method TODO. | |
| Mathematical operations | |
| void | dupdate (mat &v, double nu=1.0) | 
| dupdate in exponential form (not really handy) | |
| vec | sample () const | 
| Returns a sample,  from density  . | |
| double | evallog_nn (const vec &val) const | 
| Evaluate normalized log-probability. | |
| double | lognc () const | 
| logarithm of the normalizing constant,   | |
| vec | mean () const | 
| return expected value | |
| vec | variance () const | 
| return expected variance (not covariance!) | |
| shared_ptr< mpdf > | condition (const RV &rvn) const | 
| Return conditional density on the given RV, the remaining rvs will be in conditioning. | |
| void | condition (const RV &rvn, mpdf &target) const | 
| shared_ptr< epdf > | marginal (const RV &rvn) const | 
| Return marginal density on the given RV, the remainig rvs are intergrated out. | |
| void | marginal (const RV &rvn, enorm< sq_T > &target) const | 
| Access to attributes | |
| vec & | _mu () | 
| const vec & | _mu () const | 
| void | set_mu (const vec mu0) | 
| sq_T & | _R () | 
| const sq_T & | _R () const | 
| Constructors | |
| Construction of each epdf should support two types of constructors: 
 The following constructors should be supported for convenience: 
 All internal data structures are constructed as empty. Their values (including sizes) will be set by method  | |
| void | set_parameters (int dim0) | 
| Matematical Operations | |
| virtual mat | sample_m (int N) const | 
| Returns N samples,  from density  . | |
| virtual void | qbounds (vec &lb, vec &ub, double percentage=0.95) const | 
| Lower and upper bounds of percentage% quantile, returns mean-2*sigma as default. | |
| Connection to other classes | |
| void | set_rv (const RV &rv0) | 
| Name its rv. | |
| bool | isnamed () const | 
| True if rv is assigned. | |
| const RV & | _rv () const | 
| Return name (fails when isnamed is false). | |
| Access to attributes | |
| int | dimension () const | 
| Size of the random variable. | |
| Protected Attributes | |
| vec | mu | 
| mean value | |
| sq_T | R | 
| Covariance matrix in decomposed form. | |
| int | dim | 
| dimension of the random variable | |
| RV | rv | 
| Description of the random variable. | |
| void bdm::enorm< sq_T >::from_setting | ( | const Setting & | root | ) |  [inline, virtual] | 
Create Normal density
![\[ f(rv) = N(\mu, R) \]](form_164.png) 
from structure
class = 'enorm<ldmat>', (OR) 'enorm<chmat>', (OR) 'enorm<fsqmat>'; mu = []; // mean value R = []; // variance, square matrix of appropriate dimension
Reimplemented from bdm::epdf.
References bdm::UI::get(), bdm::enorm< sq_T >::mu, bdm::enorm< sq_T >::R, and bdm::enorm< sq_T >::validate().
 1.6.1
 1.6.1