#include <particles.h>
Public Member Functions | |
| void | set_options (const string &opt) | 
| virtual void | bayes_gensmp () | 
| bayes I - generate samples and add their weights to lls  | |
| virtual void | bayes_weights () | 
| bayes II - compute weights of the  | |
| virtual bool | do_resampling () | 
| important part of particle filtering - decide if it is time to perform resampling  | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule.   | |
| vec & | __w () | 
| access function  | |
| vec & | _lls () | 
| access function  | |
| RESAMPLING_METHOD | _resmethod () const | 
| const eEmp & | posterior () const | 
| access function  | |
| void | from_setting (const Setting &set) | 
| void | resmethod_from_set (const Setting &set) | 
| auxiliary function reading parameter 'resmethod' from configuration file  | |
| void | prior_from_set (const Setting &set) | 
| load prior information from set and set internal structures accordingly  | |
| void | validate () | 
| This method TODO.  | |
| void | resample (ivec &ind) | 
| resample posterior density (from outside - see MPF)  | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance.  | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure.  | |
Constructors  | |
| PF () | |
| void | set_parameters (int n0, double res_th0=0.5, RESAMPLING_METHOD rm=SYSTEMATIC) | 
| void | set_model (shared_ptr< mpdf > par0, shared_ptr< mpdf > obs0) | 
| void | set_statistics (const vec w0, const epdf &epdf0) | 
| void | set_statistics (const eEmp &epdf0) | 
Constructors  | |
| virtual BM * | _copy_ () const | 
Mathematical operations  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| virtual double | logpred (const vec &dt) const | 
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
| virtual epdf * | epredictor () const | 
Constructs a predictive density  .  | |
| virtual mpdf * | predictor () const | 
Constructs conditional density of 1-step ahead predictor  .  | |
Access to attributes  | |
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| void | set_rv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
Protected Attributes | |
| int | n | 
| number of particles;  | |
| eEmp | est | 
| posterior density  | |
| vec & | _w | 
pointer into eEmp  | |
| Array< vec > & | _samples | 
pointer into eEmp  | |
| shared_ptr< mpdf > | par | 
| Parameter evolution model.  | |
| shared_ptr< mpdf > | obs | 
| Observation model.  | |
| vec | lls | 
| internal structure storing loglikelihood of predictions  | |
| RESAMPLING_METHOD | resmethod | 
| which resampling method will be used  | |
| double | res_threshold | 
| RV | drv | 
| Random variable of the data (optional).  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
Options  | |
| bool | opt_L_smp | 
| Log all samples.  | |
| bool | opt_L_wei | 
| Log all samples.  | |
Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed  | |
| const RV & | _rvc () const | 
| access function  | |
| virtual void | condition (const vec &val) | 
Substitute val for rvc.  | |
| RV | rvc | 
| Name of extension variable.  | |
Logging of results | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger.  | |
| virtual void | logit (logger &L) | 
| ivec | LIDs | 
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll].  | |
| ivec | LFlags | 
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs.  | |
Posterior density is represented by a weighted empirical density (eEmp ). 
| virtual BM* bdm::BM::_copy_ | ( | ) |  const [inline, virtual, inherited] | 
        
Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:
BM* _copy_() const {return new BM(*this);}
Reimplemented in bdm::ARX, bdm::ARXfrg, bdm::KalmanCh, bdm::EKFCh, and bdm::BMEF.
| void bdm::PF::bayes | ( | const vec & | dt | ) |  [virtual] | 
        
Incremental Bayes rule.
| dt | vector of input data | 
Implements bdm::BM.
References _samples, bayes_gensmp(), bayes_weights(), do_resampling(), est, lls, n, obs, bdm::eEmp::resample(), and resmethod.
| void bdm::PF::from_setting | ( | const Setting & | set | ) |  [inline, virtual] | 
        
configuration structure for basic PF
parameter_pdf = mpdf_class; // parameter evolution pdf observation_pdf = mpdf_class; // observation pdf prior = epdf_class; // prior probability density --- optional --- n = 10; // number of particles resmethod = 'systematic', or 'multinomial', or 'stratified' // resampling method res_threshold = 0.5; // resample when active particles drop below 50%
Reimplemented from bdm::BM.
References bdm::RV::add(), obs, par, prior_from_set(), and resmethod_from_set().
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) |  const [inline, virtual, inherited] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
References bdm_error.
Referenced by bdm::BM::logpred_m().
| void bdm::PF::set_options | ( | const string & | opt | ) |  [inline, virtual] | 
        
Set posterior density by sampling from epdf0 Extends original BM::set_options by two more options:
Reimplemented from bdm::BM.
double bdm::PF::res_threshold [protected]           | 
        
resampling threshold; in this case its meaning is minimum ratio of active particles For example, for 0.5 resampling is performed when the numebr of active aprticles drops belo 50%.
Referenced by do_resampling(), and resmethod_from_set().
 1.5.9