00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 
00017 #include "../shared_ptr.h"
00018 #include "../base/bdmbase.h"
00019 #include "../math/chmat.h"
00020 
00021 namespace bdm
00022 {
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf
00039 {
00040         public:
00041 
00043                 eEF () : epdf () {};
00045                 virtual double lognc() const = 0;
00046 
00048                 virtual double evallog_nn (const vec &val) const {
00049                         bdm_error ("Not implemented");
00050                         return 0.0;
00051                 }
00052 
00054                 virtual double evallog (const vec &val) const {
00055                         double tmp;
00056                         tmp = evallog_nn (val) - lognc();
00057                         return tmp;
00058                 }
00060                 virtual vec evallog_m (const mat &Val) const {
00061                         vec x (Val.cols());
00062                         for (int i = 0;i < Val.cols();i++) {x (i) = evallog_nn (Val.get_col (i)) ;}
00063                         return x -lognc();
00064                 }
00066                 virtual vec evallog_m (const Array<vec> &Val) const {
00067                         vec x (Val.length());
00068                         for (int i = 0;i < Val.length();i++) {x (i) = evallog_nn (Val (i)) ;}
00069                         return x -lognc();
00070                 }
00071 
00073                 virtual void pow (double p) {
00074                         bdm_error ("Not implemented");
00075                 }
00076 };
00077 
00078 
00080 class BMEF : public BM
00081 {
00082         protected:
00084                 double frg;
00086                 double last_lognc;
00087         public:
00089                 BMEF (double frg0 = 1.0) : BM (), frg (frg0) {}
00091                 BMEF (const BMEF &B) : BM (B), frg (B.frg), last_lognc (B.last_lognc) {}
00093                 virtual void set_statistics (const BMEF* BM0) {
00094                         bdm_error ("Not implemented");
00095                 }
00096 
00098                 virtual void bayes (const vec &data, const double w) {};
00099                 
00100                 void bayes (const vec &dt);
00101 
00103                 virtual void flatten (const BMEF * B) {
00104                         bdm_error ("Not implemented");
00105                 }
00106 
00107                 BMEF* _copy_ () const {
00108                         bdm_error ("function _copy_ not implemented for this BM");
00109                         return NULL;
00110                 }
00111 };
00112 
00113 template<class sq_T, template <typename> class TEpdf>
00114 class mlnorm;
00115 
00121 template<class sq_T>
00122 class enorm : public eEF
00123 {
00124         protected:
00126                 vec mu;
00128                 sq_T R;
00129         public:
00132 
00133                 enorm () : eEF (), mu (), R () {};
00134                 enorm (const vec &mu, const sq_T &R) {set_parameters (mu, R);}
00135                 void set_parameters (const vec &mu, const sq_T &R);
00145                 void from_setting (const Setting &root);
00146                 void validate() {
00147                         bdm_assert (mu.length() == R.rows(), "mu and R parameters do not match");
00148                         dim = mu.length();
00149                 }
00151 
00154 
00156                 void dupdate (mat &v, double nu = 1.0);
00157 
00158                 vec sample() const;
00159 
00160                 double evallog_nn (const vec &val) const;
00161                 double lognc () const;
00162                 vec mean() const {return mu;}
00163                 vec variance() const {return diag (R.to_mat());}
00164 
00165                 shared_ptr<mpdf> condition ( const RV &rvn ) const;
00166 
00167                 
00168                 
00169                 
00170                 
00171                 void condition ( const RV &rvn, mpdf &target ) const;
00172 
00173                 shared_ptr<epdf> marginal (const RV &rvn ) const;
00174                 void marginal ( const RV &rvn, enorm<sq_T> &target ) const;
00176 
00179 
00180                 vec& _mu() {return mu;}
00181                 const vec& _mu() const {return mu;}
00182                 void set_mu (const vec mu0) { mu = mu0;}
00183                 sq_T& _R() {return R;}
00184                 const sq_T& _R() const {return R;}
00186 
00187 };
00188 UIREGISTER2 (enorm, chmat);
00189 SHAREDPTR2 ( enorm, chmat );
00190 UIREGISTER2 (enorm, ldmat);
00191 SHAREDPTR2 ( enorm, ldmat );
00192 UIREGISTER2 (enorm, fsqmat);
00193 SHAREDPTR2 ( enorm, fsqmat );
00194 
00195 
00202 class egiw : public eEF
00203 {
00204         protected:
00206                 ldmat V;
00208                 double nu;
00210                 int dimx;
00212                 int nPsi;
00213         public:
00216                 egiw() : eEF() {};
00217                 egiw (int dimx0, ldmat V0, double nu0 = -1.0) : eEF() {set_parameters (dimx0, V0, nu0);};
00218 
00219                 void set_parameters (int dimx0, ldmat V0, double nu0 = -1.0);
00221 
00222                 vec sample() const;
00223                 vec mean() const;
00224                 vec variance() const;
00225 
00227                 vec est_theta() const;
00228 
00230                 ldmat est_theta_cov() const;
00231 
00233                 void mean_mat (mat &M, mat&R) const;
00235                 double evallog_nn (const vec &val) const;
00236                 double lognc () const;
00237                 void pow (double p) {V *= p;nu *= p;};
00238 
00241 
00242                 ldmat& _V() {return V;}
00243                 const ldmat& _V() const {return V;}
00244                 double& _nu()  {return nu;}
00245                 const double& _nu() const {return nu;}
00260                 void from_setting (const Setting &set) {
00261                         epdf::from_setting(set);
00262                         if (!UI::get (nu, set, "nu", UI::compulsory)) {nu=-1;}
00263                         UI::get (dimx, set, "dimx", UI::compulsory);
00264                         mat V;
00265                         UI::get (V, set, "V", UI::compulsory);
00266                         set_parameters (dimx, V, nu);
00267                 }
00269 };
00270 UIREGISTER ( egiw );
00271 SHAREDPTR ( egiw );
00272 
00281 class eDirich: public eEF
00282 {
00283         protected:
00285                 vec beta;
00286         public:
00289 
00290                 eDirich () : eEF () {};
00291                 eDirich (const eDirich &D0) : eEF () {set_parameters (D0.beta);};
00292                 eDirich (const vec &beta0) {set_parameters (beta0);};
00293                 void set_parameters (const vec &beta0) {
00294                         beta = beta0;
00295                         dim = beta.length();
00296                 }
00298 
00300                 vec sample() const {
00301                         vec y(beta.length());
00302                         for (int i=0; i<beta.length(); i++){
00303                                 GamRNG.setup(beta(i),1);
00304                                 #pragma omp critical
00305                                 y(i)=GamRNG();
00306                         }
00307                         return y/sum(y);
00308                 }
00309 
00310                 vec mean() const {return beta / sum (beta);};
00311                 vec variance() const {double gamma = sum (beta); return elem_mult (beta, (gamma-beta)) / (gamma*gamma* (gamma + 1));}
00313                 double evallog_nn (const vec &val) const {
00314                         double tmp; tmp = (beta - 1) * log (val);
00315                         return tmp;
00316                 }
00317 
00318                 double lognc () const {
00319                         double tmp;
00320                         double gam = sum (beta);
00321                         double lgb = 0.0;
00322                         for (int i = 0;i < beta.length();i++) {lgb += lgamma (beta (i));}
00323                         tmp = lgb - lgamma (gam);
00324                         return tmp;
00325                 }
00326 
00328                 vec& _beta()  {return beta;}
00335                 void from_setting(const Setting &set){
00336                         epdf::from_setting(set);
00337                         UI::get(beta,set, "beta", UI::compulsory);
00338                         validate();
00339                 }
00340                 void validate() {
00341                         
00342                         dim = beta.length();
00343                 }
00344 };
00345 UIREGISTER(eDirich);
00346 
00358 class mDirich: public mpdf_internal<eDirich> {
00359         protected:
00361                 double k;
00363                 vec &_beta;
00365                 vec betac;
00366         public:
00367                 mDirich(): mpdf_internal<eDirich>(), _beta(iepdf._beta()){};
00368                 void condition (const vec &val) {_beta =  val/k+betac; };
00381                 void from_setting (const Setting &set) {
00382                         mpdf::from_setting (set); 
00383                         if (_rv()._dsize()>0){
00384                                 rvc = _rv().copy_t(-1);
00385                         }
00386                         vec beta0; 
00387                         if (!UI::get (beta0, set, "beta0", UI::optional)){
00388                                 beta0 = ones(_rv()._dsize());
00389                         }
00390                         if (!UI::get (betac, set, "betac", UI::optional)){
00391                                 betac = 0.1*ones(_rv()._dsize());
00392                         }
00393                         _beta = beta0;
00394                         
00395                         UI::get (k, set, "k", UI::compulsory);
00396                         validate();
00397                 }
00398                 void validate() { 
00399                         iepdf.validate();
00400                         bdm_assert(_beta.length()==betac.length(),"beta0 and betac are not compatible");
00401                         if (_rv()._dsize()>0){
00402                                 bdm_assert( (_rv()._dsize()==dimension()) , "Size of rv does not match with beta");
00403                         }
00404                         dimc = _beta.length();
00405                 };
00406 };
00407 UIREGISTER(mDirich);
00408 
00410 class multiBM : public BMEF
00411 {
00412         protected:
00414                 eDirich est;
00416                 vec β
00417         public:
00419                 multiBM () : BMEF (), est (), beta (est._beta()) {
00420                         if (beta.length() > 0) {last_lognc = est.lognc();}
00421                         else{last_lognc = 0.0;}
00422                 }
00424                 multiBM (const multiBM &B) : BMEF (B), est (B.est), beta (est._beta()) {}
00426                 void set_statistics (const BM* mB0) {const multiBM* mB = dynamic_cast<const multiBM*> (mB0); beta = mB->beta;}
00427                 void bayes (const vec &dt) {
00428                         if (frg < 1.0) {beta *= frg;last_lognc = est.lognc();}
00429                         beta += dt;
00430                         if (evalll) {ll = est.lognc() - last_lognc;}
00431                 }
00432                 double logpred (const vec &dt) const {
00433                         eDirich pred (est);
00434                         vec &beta = pred._beta();
00435 
00436                         double lll;
00437                         if (frg < 1.0)
00438                                 {beta *= frg;lll = pred.lognc();}
00439                         else
00440                                 if (evalll) {lll = last_lognc;}
00441                                 else{lll = pred.lognc();}
00442 
00443                         beta += dt;
00444                         return pred.lognc() - lll;
00445                 }
00446                 void flatten (const BMEF* B) {
00447                         const multiBM* E = dynamic_cast<const multiBM*> (B);
00448                         
00449                         const vec &Eb = E->beta;
00450                         beta *= (sum (Eb) / sum (beta));
00451                         if (evalll) {last_lognc = est.lognc();}
00452                 }
00454                 const eDirich& posterior() const {return est;};
00456                 void set_parameters (const vec &beta0) {
00457                         est.set_parameters (beta0);
00458                         if (evalll) {last_lognc = est.lognc();}
00459                 }
00460 };
00461 
00471 class egamma : public eEF
00472 {
00473         protected:
00475                 vec alpha;
00477                 vec beta;
00478         public :
00481                 egamma () : eEF (), alpha (0), beta (0) {};
00482                 egamma (const vec &a, const vec &b) {set_parameters (a, b);};
00483                 void set_parameters (const vec &a, const vec &b) {alpha = a, beta = b;dim = alpha.length();};
00485 
00486                 vec sample() const;
00487                 double evallog (const vec &val) const;
00488                 double lognc () const;
00490                 vec& _alpha() {return alpha;}
00492                 vec& _beta() {return beta;}
00493                 vec mean() const {return elem_div (alpha, beta);}
00494                 vec variance() const {return elem_div (alpha, elem_mult (beta, beta)); }
00495 
00506                 void from_setting (const Setting &set) {
00507                         epdf::from_setting (set); 
00508                         UI::get (alpha, set, "alpha", UI::compulsory);
00509                         UI::get (beta, set, "beta", UI::compulsory);
00510                         validate();
00511                 }
00512                 void validate() {
00513                         bdm_assert (alpha.length() == beta.length(), "parameters do not match");
00514                         dim = alpha.length();
00515                 }
00516 };
00517 UIREGISTER (egamma);
00518 SHAREDPTR ( egamma );
00519 
00536 class eigamma : public egamma
00537 {
00538         protected:
00539         public :
00544 
00545                 vec sample() const {return 1.0 / egamma::sample();};
00547                 vec mean() const {return elem_div (beta, alpha - 1);}
00548                 vec variance() const {vec mea = mean(); return elem_div (elem_mult (mea, mea), alpha - 2);}
00549 };
00550 
00552 
00553 
00554 
00555 
00556 
00557 
00559 
00560 
00561 
00562 
00563 
00564 
00566 
00567 class euni: public epdf
00568 {
00569         protected:
00571                 vec low;
00573                 vec high;
00575                 vec distance;
00577                 double nk;
00579                 double lnk;
00580         public:
00583                 euni () : epdf () {}
00584                 euni (const vec &low0, const vec &high0) {set_parameters (low0, high0);}
00585                 void set_parameters (const vec &low0, const vec &high0) {
00586                         distance = high0 - low0;
00587                         low = low0;
00588                         high = high0;
00589                         nk = prod (1.0 / distance);
00590                         lnk = log (nk);
00591                         dim = low.length();
00592                 }
00594 
00595                 double evallog (const vec &val) const  {
00596                         if (any (val < low) && any (val > high)) {return inf;}
00597                         else return lnk;
00598                 }
00599                 vec sample() const {
00600                         vec smp (dim);
00601 #pragma omp critical
00602                         UniRNG.sample_vector (dim , smp);
00603                         return low + elem_mult (distance, smp);
00604                 }
00606                 vec mean() const {return (high -low) / 2.0;}
00607                 vec variance() const {return (pow (high, 2) + pow (low, 2) + elem_mult (high, low)) / 3.0;}
00618                 void from_setting (const Setting &set) {
00619                         epdf::from_setting (set); 
00620 
00621                         UI::get (high, set, "high", UI::compulsory);
00622                         UI::get (low, set, "low", UI::compulsory);
00623                         set_parameters(low,high);
00624                         validate();
00625                 }
00626                 void validate() {
00627                         bdm_assert(high.length()==low.length(), "Incompatible high and low vectors");
00628                         dim = high.length();
00629                         bdm_assert (min (distance) > 0.0, "bad support");
00630                 }
00631 };
00632 UIREGISTER(euni);
00633 
00639 template < class sq_T, template <typename> class TEpdf = enorm >
00640 class mlnorm : public mpdf_internal< TEpdf<sq_T> >
00641 {
00642         protected:
00644                 mat A;
00646                 vec mu_const;
00647 
00648         public:
00651                 mlnorm() : mpdf_internal< TEpdf<sq_T> >() {};
00652                 mlnorm (const mat &A, const vec &mu0, const sq_T &R) : mpdf_internal< TEpdf<sq_T> >() {
00653                         set_parameters (A, mu0, R);
00654                 }
00655 
00657                 void set_parameters (const  mat &A0, const vec &mu0, const sq_T &R0) {  
00658                         this->iepdf.set_parameters (zeros (A0.rows()), R0);
00659                         A = A0;
00660                         mu_const = mu0;
00661                         this->dimc = A0.cols();
00662                 }
00665                 void condition (const vec &cond) {
00666                         this->iepdf._mu() = A * cond + mu_const;
00667 
00668                 }
00669 
00671                 const vec& _mu_const() const {return mu_const;}
00673                 const mat& _A() const {return A;}
00675                 mat _R() const { return this->iepdf._R().to_mat(); }
00676 
00678                 template<typename sq_M>
00679                 friend std::ostream &operator<< (std::ostream &os,  mlnorm<sq_M, enorm> &ml);
00680 
00691                 void from_setting (const Setting &set) {
00692                         mpdf::from_setting (set);
00693 
00694                         UI::get (A, set, "A", UI::compulsory);
00695                         UI::get (mu_const, set, "const", UI::compulsory);
00696                         mat R0;
00697                         UI::get (R0, set, "R", UI::compulsory);
00698                         set_parameters (A, mu_const, R0);
00699                         validate();
00700                 };
00701                 void validate() {
00702                         bdm_assert (A.rows() == mu_const.length(), "mlnorm: A vs. mu mismatch");
00703                         bdm_assert (A.rows() == _R().rows(), "mlnorm: A vs. R mismatch");
00704                         
00705                 }
00706 };
00707 UIREGISTER2 (mlnorm,ldmat);
00708 SHAREDPTR2 ( mlnorm, ldmat );
00709 UIREGISTER2 (mlnorm,fsqmat);
00710 SHAREDPTR2 ( mlnorm, fsqmat );
00711 UIREGISTER2 (mlnorm, chmat);
00712 SHAREDPTR2 ( mlnorm, chmat );
00713 
00715 template<class sq_T>
00716 class mgnorm : public mpdf_internal< enorm< sq_T > >
00717 {
00718         private:
00719 
00720                 shared_ptr<fnc> g;
00721 
00722         public:
00724                 mgnorm() : mpdf_internal<enorm<sq_T> >() { }
00726                 inline void set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0);
00727                 inline void condition (const vec &cond);
00728 
00729 
00748                 void from_setting (const Setting &set) {
00749                         mpdf::from_setting(set);
00750                         shared_ptr<fnc> g = UI::build<fnc> (set, "g", UI::compulsory);
00751 
00752                         mat R;
00753                         vec dR;
00754                         if (UI::get (dR, set, "dR"))
00755                                 R = diag (dR);
00756                         else
00757                                 UI::get (R, set, "R", UI::compulsory);
00758 
00759                         set_parameters (g, R);
00760                         validate();
00761                 }
00762                 void validate() {
00763                         bdm_assert(g->dimension()==this->dimension(),"incompatible function");
00764                 }
00765 };
00766 
00767 UIREGISTER2 (mgnorm, chmat);
00768 SHAREDPTR2 ( mgnorm, chmat );
00769 
00770 
00778 class mlstudent : public mlnorm<ldmat, enorm>
00779 {
00780         protected:
00782                 ldmat Lambda;
00784                 ldmat &_R;
00786                 ldmat Re;
00787         public:
00788                 mlstudent () : mlnorm<ldmat, enorm> (),
00789                                 Lambda (),      _R (iepdf._R()) {}
00791                 void set_parameters (const mat &A0, const vec &mu0, const ldmat &R0, const ldmat& Lambda0) {
00792                         iepdf.set_parameters (mu0, R0);
00793                         A = A0;
00794                         mu_const = mu0;
00795                         Re = R0;
00796                         Lambda = Lambda0;
00797                 }
00798                 void condition (const vec &cond) {
00799                         iepdf._mu() = A * cond + mu_const;
00800                         double zeta;
00801                         
00802                         if ( (cond.length() + 1) == Lambda.rows()) {
00803                                 zeta = Lambda.invqform (concat (cond, vec_1 (1.0)));
00804                         } else {
00805                                 zeta = Lambda.invqform (cond);
00806                         }
00807                         _R = Re;
00808                         _R *= (1 + zeta);
00809                 };
00810 
00811                 void validate() {
00812                         bdm_assert (A.rows() == mu_const.length(), "mlstudent: A vs. mu mismatch");
00813                         bdm_assert (_R.rows() == A.rows(), "mlstudent: A vs. R mismatch");
00814                         
00815                 }
00816 };
00826 class mgamma : public mpdf_internal<egamma>
00827 {
00828         protected:
00829 
00831                 double k;
00832 
00834                 vec &_beta;
00835 
00836         public:
00838                 mgamma() : mpdf_internal<egamma>(), k (0),
00839                                 _beta (iepdf._beta()) {
00840                 }
00841 
00843                 void set_parameters (double k, const vec &beta0);
00844 
00845                 void condition (const vec &val) {_beta = k / val;};
00857                 void from_setting (const Setting &set) {
00858                         mpdf::from_setting (set); 
00859                         vec betatmp; 
00860                         UI::get (betatmp, set, "beta", UI::compulsory);
00861                         UI::get (k, set, "k", UI::compulsory);
00862                         set_parameters (k, betatmp);
00863                 }
00864 };
00865 UIREGISTER (mgamma);
00866 SHAREDPTR (mgamma);
00867 
00877 class migamma : public mpdf_internal<eigamma>
00878 {
00879         protected:
00881                 double k;
00882 
00884                 vec &_alpha;
00885 
00887                 vec &_beta;
00888 
00889         public:
00892                 migamma() : mpdf_internal<eigamma>(),
00893                                 k (0),
00894                                 _alpha (iepdf._alpha()),
00895                                 _beta (iepdf._beta()) {
00896                 }
00897 
00898                 migamma (const migamma &m) : mpdf_internal<eigamma>(),
00899                                 k (0),
00900                                 _alpha (iepdf._alpha()),
00901                                 _beta (iepdf._beta()) {
00902                 }
00904 
00906                 void set_parameters (int len, double k0) {
00907                         k = k0;
00908                         iepdf.set_parameters ( (1.0 / (k*k) + 2.0) *ones (len) , ones (len) );
00909                         dimc = dimension();
00910                 };
00911                 void condition (const vec &val) {
00912                         _beta = elem_mult (val, (_alpha - 1.0));
00913                 };
00914 };
00915 
00916 
00928 class mgamma_fix : public mgamma
00929 {
00930         protected:
00932                 double l;
00934                 vec refl;
00935         public:
00937                 mgamma_fix () : mgamma (), refl () {};
00939                 void set_parameters (double k0 , vec ref0, double l0) {
00940                         mgamma::set_parameters (k0, ref0);
00941                         refl = pow (ref0, 1.0 - l0);l = l0;
00942                         dimc = dimension();
00943                 };
00944 
00945                 void condition (const vec &val) {vec mean = elem_mult (refl, pow (val, l)); _beta = k / mean;};
00946 };
00947 
00948 
00961 class migamma_ref : public migamma
00962 {
00963         protected:
00965                 double l;
00967                 vec refl;
00968         public:
00970                 migamma_ref () : migamma (), refl () {};
00972                 void set_parameters (double k0 , vec ref0, double l0) {
00973                         migamma::set_parameters (ref0.length(), k0);
00974                         refl = pow (ref0, 1.0 - l0);
00975                         l = l0;
00976                         dimc = dimension();
00977                 };
00978 
00979                 void condition (const vec &val) {
00980                         vec mean = elem_mult (refl, pow (val, l));
00981                         migamma::condition (mean);
00982                 };
00983 
00984 
00997                 void from_setting (const Setting &set);
00998 
00999                 
01000 };
01001 
01002 
01003 UIREGISTER (migamma_ref);
01004 SHAREDPTR (migamma_ref);
01005 
01016 class elognorm: public enorm<ldmat>
01017 {
01018         public:
01019                 vec sample() const {return exp (enorm<ldmat>::sample());};
01020                 vec mean() const {vec var = enorm<ldmat>::variance();return exp (mu - 0.5*var);};
01021 
01022 };
01023 
01030 class mlognorm : public mpdf_internal<elognorm>
01031 {
01032         protected:
01034                 double sig2;
01035 
01037                 vec μ
01038         public:
01040                 mlognorm() : mpdf_internal<elognorm>(),
01041                                 sig2 (0),
01042                                 mu (iepdf._mu()) {
01043                 }
01044 
01046                 void set_parameters (int size, double k) {
01047                         sig2 = 0.5 * log (k * k + 1);
01048                         iepdf.set_parameters (zeros (size), 2*sig2*eye (size));
01049 
01050                         dimc = size;
01051                 };
01052 
01053                 void condition (const vec &val) {
01054                         mu = log (val) - sig2;
01055                 };
01056 
01068                 void from_setting (const Setting &set);
01069 
01070                 
01071 
01072 };
01073 
01074 UIREGISTER (mlognorm);
01075 SHAREDPTR (mlognorm);
01076 
01080 class eWishartCh : public epdf
01081 {
01082         protected:
01084                 chmat Y;
01086                 int p;
01088                 double delta;
01089         public:
01091                 void set_parameters (const mat &Y0, const double delta0) {Y = chmat (Y0);delta = delta0; p = Y.rows(); dim = p * p; }
01093                 mat sample_mat() const {
01094                         mat X = zeros (p, p);
01095 
01096                         
01097                         for (int i = 0;i < p;i++) {
01098                                 GamRNG.setup (0.5* (delta - i) , 0.5);   
01099 #pragma omp critical
01100                                 X (i, i) = sqrt (GamRNG());
01101                         }
01102                         
01103                         for (int i = 0;i < p;i++) {
01104                                 for (int j = i + 1;j < p;j++) {
01105 #pragma omp critical
01106                                         X (i, j) = NorRNG.sample();
01107                                 }
01108                         }
01109                         return X*Y._Ch();
01110                 }
01111                 vec sample () const {
01112                         return vec (sample_mat()._data(), p*p);
01113                 }
01115                 void setY (const mat &Ch0) {copy_vector (dim, Ch0._data(), Y._Ch()._data());}
01117                 void _setY (const vec &ch0) {copy_vector (dim, ch0._data(), Y._Ch()._data()); }
01119                 const chmat& getY() const {return Y;}
01120 };
01121 
01123 
01125 class eiWishartCh: public epdf
01126 {
01127         protected:
01129                 eWishartCh W;
01131                 int p;
01133                 double delta;
01134         public:
01136                 void set_parameters (const mat &Y0, const double delta0) {
01137                         delta = delta0;
01138                         W.set_parameters (inv (Y0), delta0);
01139                         dim = W.dimension(); p = Y0.rows();
01140                 }
01141                 vec sample() const {mat iCh; iCh = inv (W.sample_mat()); return vec (iCh._data(), dim);}
01143                 void _setY (const vec &y0) {
01144                         mat Ch (p, p);
01145                         mat iCh (p, p);
01146                         copy_vector (dim, y0._data(), Ch._data());
01147 
01148                         iCh = inv (Ch);
01149                         W.setY (iCh);
01150                 }
01151                 virtual double evallog (const vec &val) const {
01152                         chmat X (p);
01153                         const chmat& Y = W.getY();
01154 
01155                         copy_vector (p*p, val._data(), X._Ch()._data());
01156                         chmat iX (p);X.inv (iX);
01157                         
01158 
01159                         mat M = Y.to_mat() * iX.to_mat();
01160 
01161                         double log1 = 0.5 * p * (2 * Y.logdet()) - 0.5 * (delta + p + 1) * (2 * X.logdet()) - 0.5 * trace (M);
01162                         
01163 
01164                         
01165 
01166 
01167 
01168 
01169 
01170 
01171                         return log1;
01172                 };
01173 
01174 };
01175 
01177 class rwiWishartCh : public mpdf_internal<eiWishartCh>
01178 {
01179         protected:
01181                 double sqd;
01183                 vec refl;
01185                 double l;
01187                 int p;
01188 
01189         public:
01190                 rwiWishartCh() : sqd (0), l (0), p (0) {}
01192                 void set_parameters (int p0, double k, vec ref0, double l0) {
01193                         p = p0;
01194                         double delta = 2 / (k * k) + p + 3;
01195                         sqd = sqrt (delta - p - 1);
01196                         l = l0;
01197                         refl = pow (ref0, 1 - l);
01198 
01199                         iepdf.set_parameters (eye (p), delta);
01200                         dimc = iepdf.dimension();
01201                 }
01202                 void condition (const vec &c) {
01203                         vec z = c;
01204                         int ri = 0;
01205                         for (int i = 0;i < p*p;i += (p + 1)) {
01206                                 z (i) = pow (z (i), l) * refl (ri);
01207                                 ri++;
01208                         }
01209 
01210                         iepdf._setY (sqd*z);
01211                 }
01212 };
01213 
01215 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
01221 class eEmp: public epdf
01222 {
01223         protected :
01225                 int n;
01227                 vec w;
01229                 Array<vec> samples;
01230         public:
01233                 eEmp () : epdf (), w (), samples () {};
01235                 eEmp (const eEmp &e) : epdf (e), w (e.w), samples (e.samples) {};
01237 
01239                 void set_statistics (const vec &w0, const epdf &pdf0);
01241                 void set_statistics (const epdf &pdf0 , int n) {set_statistics (ones (n) / n, pdf0);};
01243                 void set_samples (const epdf* pdf0);
01245                 void set_parameters (int n0, bool copy = true) {n = n0; w.set_size (n0, copy);samples.set_size (n0, copy);};
01247                 void set_parameters (const Array<vec> &Av) {
01248                         bdm_assert(Av.size()>0,"Empty samples"); 
01249                         n = Av.size(); 
01250                         epdf::set_parameters(Av(0).length());
01251                         w=1/n*ones(n);
01252                         samples=Av;
01253                 };
01255                 vec& _w()  {return w;};
01257                 const vec& _w() const {return w;};
01259                 Array<vec>& _samples() {return samples;};
01261                 const vec& _sample(int i) const {return samples(i);};
01263                 const Array<vec>& _samples() const {return samples;};
01266                 void resample ( ivec &index, RESAMPLING_METHOD method = SYSTEMATIC);
01267 
01269                 void resample (RESAMPLING_METHOD method = SYSTEMATIC){ivec ind; resample(ind,method);};
01270                 
01272                 vec sample() const {
01273                         bdm_error ("Not implemented");
01274                         return vec();
01275                 }
01276 
01278                 double evallog (const vec &val) const {
01279                         bdm_error ("Not implemented");
01280                         return 0.0;
01281                 }
01282 
01283                 vec mean() const {
01284                         vec pom = zeros (dim);
01285                         for (int i = 0;i < n;i++) {pom += samples (i) * w (i);}
01286                         return pom;
01287                 }
01288                 vec variance() const {
01289                         vec pom = zeros (dim);
01290                         for (int i = 0;i < n;i++) {pom += pow (samples (i), 2) * w (i);}
01291                         return pom -pow (mean(), 2);
01292                 }
01294                 void qbounds (vec &lb, vec &ub, double perc = 0.95) const {
01295                         
01296                         lb.set_size (dim);
01297                         ub.set_size (dim);
01298                         lb = std::numeric_limits<double>::infinity();
01299                         ub = -std::numeric_limits<double>::infinity();
01300                         int j;
01301                         for (int i = 0;i < n;i++) {
01302                                 for (j = 0;j < dim; j++) {
01303                                         if (samples (i) (j) < lb (j)) {lb (j) = samples (i) (j);}
01304                                         if (samples (i) (j) > ub (j)) {ub (j) = samples (i) (j);}
01305                                 }
01306                         }
01307                 }
01308 };
01309 
01310 
01312 
01313 template<class sq_T>
01314 void enorm<sq_T>::set_parameters (const vec &mu0, const sq_T &R0)
01315 {
01316 
01317         mu = mu0;
01318         R = R0;
01319         validate();
01320 };
01321 
01322 template<class sq_T>
01323 void enorm<sq_T>::from_setting (const Setting &set)
01324 {
01325         epdf::from_setting (set); 
01326 
01327         UI::get (mu, set, "mu", UI::compulsory);
01328         mat Rtmp;
01329         UI::get (Rtmp, set, "R", UI::compulsory);
01330         R = Rtmp; 
01331         validate();
01332 }
01333 
01334 template<class sq_T>
01335 void enorm<sq_T>::dupdate (mat &v, double nu)
01336 {
01337         
01338 };
01339 
01340 
01341 
01342 
01343 
01344 
01345 template<class sq_T>
01346 vec enorm<sq_T>::sample() const
01347 {
01348         vec x (dim);
01349 #pragma omp critical
01350         NorRNG.sample_vector (dim, x);
01351         vec smp = R.sqrt_mult (x);
01352 
01353         smp += mu;
01354         return smp;
01355 };
01356 
01357 
01358 
01359 
01360 
01361 
01362 
01363 
01364 
01365 template<class sq_T>
01366 double enorm<sq_T>::evallog_nn (const vec &val) const
01367 {
01368         
01369         double tmp = -0.5 * (R.invqform (mu - val));
01370         return  tmp;
01371 };
01372 
01373 template<class sq_T>
01374 inline double enorm<sq_T>::lognc () const
01375 {
01376         
01377         double tmp = 0.5 * (R.cols() * 1.83787706640935 + R.logdet());
01378         return tmp;
01379 };
01380 
01381 
01382 
01383 
01384 
01385 
01386 
01387 
01388 
01389 
01390 
01391 
01392 
01393 
01394 
01395 
01396 
01397 
01398 
01399 
01400 
01401 
01402 
01403 
01404 
01405 
01406 
01407 
01408 template<class sq_T>
01409 shared_ptr<epdf> enorm<sq_T>::marginal ( const RV &rvn ) const
01410 {
01411         enorm<sq_T> *tmp = new enorm<sq_T> ();
01412         shared_ptr<epdf> narrow(tmp);
01413         marginal ( rvn, *tmp );
01414         return narrow;
01415 }
01416 
01417 template<class sq_T>
01418 void enorm<sq_T>::marginal ( const RV &rvn, enorm<sq_T> &target ) const
01419 {
01420         bdm_assert (isnamed(), "rv description is not assigned");
01421         ivec irvn = rvn.dataind (rv);
01422 
01423         sq_T Rn (R, irvn);  
01424 
01425         target.set_rv ( rvn );
01426         target.set_parameters (mu (irvn), Rn);
01427 }
01428 
01429 template<class sq_T>
01430 shared_ptr<mpdf> enorm<sq_T>::condition ( const RV &rvn ) const
01431 {
01432         mlnorm<sq_T> *tmp = new mlnorm<sq_T> ();
01433         shared_ptr<mpdf> narrow(tmp);
01434         condition ( rvn, *tmp );
01435         return narrow;
01436 }
01437 
01438 template<class sq_T>
01439 void enorm<sq_T>::condition ( const RV &rvn, mpdf &target ) const
01440 {
01441         typedef mlnorm<sq_T> TMlnorm;
01442 
01443         bdm_assert (isnamed(), "rvs are not assigned");
01444         TMlnorm &uptarget = dynamic_cast<TMlnorm &>(target);
01445 
01446         RV rvc = rv.subt (rvn);
01447         bdm_assert ( (rvc._dsize() + rvn._dsize() == rv._dsize()), "wrong rvn");
01448         
01449         ivec irvn = rvn.dataind (rv);
01450         ivec irvc = rvc.dataind (rv);
01451         ivec perm = concat (irvn , irvc);
01452         sq_T Rn (R, perm);
01453 
01454         
01455         mat S = Rn.to_mat();
01456         
01457         int n = rvn._dsize() - 1;
01458         int end = R.rows() - 1;
01459         mat S11 = S.get (0, n, 0, n);
01460         mat S12 = S.get (0, n , rvn._dsize(), end);
01461         mat S22 = S.get (rvn._dsize(), end, rvn._dsize(), end);
01462 
01463         vec mu1 = mu (irvn);
01464         vec mu2 = mu (irvc);
01465         mat A = S12 * inv (S22);
01466         sq_T R_n (S11 - A *S12.T());
01467 
01468         uptarget.set_rv (rvn);
01469         uptarget.set_rvc (rvc);
01470         uptarget.set_parameters (A, mu1 - A*mu2, R_n);
01471 }
01472 
01475 template<class sq_T>
01476 void mgnorm<sq_T >::set_parameters (const shared_ptr<fnc> &g0, const sq_T &R0) {
01477         g = g0;
01478         this->iepdf.set_parameters (zeros (g->dimension()), R0);
01479 }
01480 
01481 template<class sq_T>
01482 void mgnorm<sq_T >::condition (const vec &cond) {this->iepdf._mu() = g->eval (cond);};
01483 
01485 template<class sq_T>
01486 std::ostream &operator<< (std::ostream &os,  mlnorm<sq_T> &ml)
01487 {
01488         os << "A:" << ml.A << endl;
01489         os << "mu:" << ml.mu_const << endl;
01490         os << "R:" << ml._R() << endl;
01491         return os;
01492 };
01493 
01494 }
01495 #endif //EF_H