Kalman filter in square root form. More...
Kalman filter in square root form.
Trivial example:
#include "estim/kalman.h" using namespace bdm; // estimation of AR(0) model int main() { //dimensions int dx = 3, dy = 3, du = 1; // matrices mat A = eye ( dx ); mat B = zeros ( dx, du ); mat C = eye ( dx ); mat D = zeros ( dy, du ); mat Q = eye ( dx ); mat R = 0.1 * eye ( dy ); //prior mat P0 = 100 * eye ( dx ); vec mu0 = zeros ( dx ); // Estimator KalmanCh KF; KF.set_parameters ( A, B, C, D,/*covariances*/ Q, R ); KF.set_statistics ( mu0, P0 ); // Estimation loop for ( int i = 0; i < 100; i++ ) { KF.bayes ( randn ( dx + du ) ); } //print results cout << "Posterior estimate of x is: " << endl; cout << "mean: " << KF.posterior().mean() << endl; cout << "variance: " << KF.posterior().variance() << endl; }
Complete constructor:
#include <kalman.h>
Public Member Functions | |
BM * | _copy_ () const |
copy constructor | |
void | set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const chmat &Q0, const chmat &R0) |
set parameters for adapt from Kalman | |
void | initialize () |
initialize internal parametetrs | |
void | bayes (const vec &dt) |
Here dt = [yt;ut] of appropriate dimensions. | |
void | from_setting (const Setting &set) |
load basic elements of Kalman from structure | |
void | set_statistics (const vec &mu0, const mat &P0) |
void | set_statistics (const vec &mu0, const chmat &P0) |
const enorm< chmat > & | posterior () const |
posterior | |
shared_ptr< epdf > | shared_posterior () |
shared posterior | |
void | validate () |
virtual string | to_string () |
This method returns a basic info about the current instance. | |
virtual void | to_setting (Setting &set) const |
This method save all the instance properties into the Setting structure. | |
int | _dimx () |
access function | |
int | _dimy () |
access function | |
int | _dimu () |
access function | |
const mat & | _A () const |
access function | |
const mat & | _B () const |
access function | |
const mat & | _C () const |
access function | |
const mat & | _D () const |
access function | |
const chmat & | _Q () const |
access function | |
const chmat & | _R () const |
access function | |
Mathematical operations | |
virtual void | bayesB (const mat &Dt) |
Batch Bayes rule (columns of Dt are observations). | |
virtual double | logpred (const vec &dt) const |
vec | logpred_m (const mat &dt) const |
Matrix version of logpred. | |
virtual epdf * | epredictor () const |
Constructs a predictive density . | |
virtual mpdf * | predictor () const |
Constructs conditional density of 1-step ahead predictor . | |
Access to attributes | |
const RV & | _drv () const |
void | set_drv (const RV &rv) |
void | set_rv (const RV &rv) |
double | _ll () const |
void | set_evalll (bool evl0) |
Protected Attributes | |
RV | yrv |
id of output | |
RV | urv |
id of input | |
mat | _K |
Kalman gain. | |
shared_ptr< enorm< chmat > > | est |
posterior | |
enorm< chmat > | fy |
marginal on data f(y|y) | |
RV | drv |
Random variable of the data (optional). | |
double | ll |
Logarithm of marginalized data likelihood. | |
bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. | |
int | dimx |
cache of rv.count() | |
int | dimy |
cache of rvy.count() | |
int | dimu |
cache of rvu.count() | |
mat | A |
Matrix A. | |
mat | B |
Matrix B. | |
mat | C |
Matrix C. | |
mat | D |
Matrix D. | |
chmat | Q |
Matrix Q in square-root form. | |
chmat | R |
Matrix R in square-root form. | |
Internal storage - needs initialize() | |
mat | preA |
mat | postA |
post array (triangular matrix) | |
Extension to conditional BM | |
This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
const RV & | _rvc () const |
access function | |
virtual void | condition (const vec &val) |
Substitute val for rvc . | |
RV | rvc |
Name of extension variable. | |
Logging of results | |
| |
virtual void | set_options (const string &opt) |
Set boolean options from a string, recognized are: "logbounds,logll". | |
virtual void | log_add (logger &L, const string &name="") |
Add all logged variables to a logger. | |
virtual void | logit (logger &L) |
Save results to the given logger, details of what is stored is configured by LIDs and options . | |
ivec | LIDs |
IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll]. | |
ivec | LFlags |
Flags for logging - same size as LIDs, each entry correspond to the same in LIDs. |
void bdm::KalmanCh::bayes | ( | const vec & | dt | ) | [virtual] |
Here dt = [yt;ut] of appropriate dimensions.
The following equality hold::
Thus this object evaluates only predictors! Not filtering densities.
Implements bdm::BM.
Reimplemented in bdm::EKFCh.
References bdm::chmat::_Ch(), bdm::Kalman< chmat >::_K, bdm::StateSpace< chmat >::A, bdm::StateSpace< chmat >::B, bdm_warning, bdm::StateSpace< chmat >::C, bdm::StateSpace< chmat >::D, bdm::StateSpace< chmat >::dimu, bdm::StateSpace< chmat >::dimx, bdm::StateSpace< chmat >::dimy, bdm::Kalman< chmat >::est, bdm::BM::evalll, bdm::eEF::evallog(), bdm::Kalman< chmat >::fy, bdm::BM::ll, and postA.
virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
References bdm_error.
Referenced by bdm::BM::logpred_m().