\form#0:$f(x)$ \form#1:$x$ \form#2:$ f( x | y) $ \form#3:$ x $ \form#4:$ y $ \form#5:$ u_t $ \form#6:$ y_t $ \form#7:$ d_t=[y_t,u_t, \ldots ]$ \form#8:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] \form#9:$y_t$ \form#10:$ c_t $ \form#11:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] \form#12:$x=$ \form#13:$ f_x()$ \form#14:$ [x_1 , x_2 , \ldots \ $ \form#15:$ f_x(rv)$ \form#16:$x \sim epdf(rv|cond)$ \form#17:$[Up_{t-1},Up_{t-2}, \ldots]$ \form#18:$ t $ \form#19:$ t+1 $ \form#20:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ \form#21:$ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $ \form#22:$t$ \form#23:$[y_{t} y_{t-1} ...]$ \form#24:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ \form#25:$ f(x_t|x_{t-1}) $ \form#26:$ f(d_t|x_t) $ \form#27:\[ L(y,u) = (y-y_{req})'Q_y (y-y_{req}) + (u-u_{req})' Q_u (u-u_{req}) \] \form#28:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] \form#29:$[\theta r]$ \form#30:$\psi=\psi(y_{1:t},u_{1:t})$ \form#31:$u_t$ \form#32:$e_t$ \form#33:\[ e_t \sim \mathcal{N}(0,1). \] \form#34:\[ f(\theta| d_1 \ldots d_t , \phi_t) \] \form#35:$\theta,r$ \form#36:$ dt = [y_t psi_t] $ \form#37:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] \form#38:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] \form#39:\[ x_{t+1} = Ax_t + B u_t + R^{1/2} e_t, y_t=Cx_t+Du_t + R^{1/2}w_t, \] \form#40:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] \form#41:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] \form#42:$\psi$ \form#43:$w=[w_1,\ldots,w_n]$ \form#44:$\theta_i$ \form#45:$\Theta$ \form#46:$\Theta = [\theta_1,\ldots,\theta_n,w]$ \form#47:$A=Ch' Ch$ \form#48:$Ch$ \form#49:$f(x) = a$ \form#50:$f(x) = Ax+B$ \form#51:$f(x,u)$ \form#52:$f(x,u) = Ax+Bu$ \form#53:$f(x0,u0)$ \form#54:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ \form#55:$u$ \form#56:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ \form#57:\[M = L'DL\] \form#58:$L$ \form#59:$D$ \form#60:$V = V + w v v'$ \form#61:$C$ \form#62:$V = C*V*C'$ \form#63:$V = C'*V*C$ \form#64:$V$ \form#65:$x= v'*V*v$ \form#66:$x= v'*inv(V)*v$ \form#67:$U$ \form#68:$A'D0 A$ \form#69:$L'DL$ \form#70:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \form#71:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] \form#72:$ f(rvc) = \int f(rv,rvc) d\ rv $ \form#73:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] \form#74:$f_i(x)$ \form#75:$p$ \form#76:$p\times$ \form#77:$n$ \form#78:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] \form#79:$\gamma=\sum_i \beta_i$ \form#80:\[ \beta = rvc / k + \beta_c \] \form#81:$ \beta_c $ \form#82:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] \form#83:$\beta$ \form#84:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] \form#85:$ \mu=A*\mbox{rvc}+\mu_0 $ \form#86:$\mu$ \form#87:$k$ \form#88:$\alpha=k$ \form#89:$\beta=k/\mu$ \form#90:$\mu/\sqrt(k)$ \form#91:$ \mu $ \form#92:$ k $ \form#93:$ \alpha=\mu/k^2+2 $ \form#94:$ \beta=\mu(\alpha-1)$ \form#95:$ \mu/\sqrt(k)$ \form#96:$l$ \form#97:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] \form#98:$ \log(x)\sim \mathcal{N}(\mu,\sigma^2) $ \form#99:\[ x \sim \frac{1}{x\sigma\sqrt{2\pi}}\exp{-\frac{1}{2\sigma^2}(\log(x)-\mu)} \] \form#100:$\mathcal{I}$ \form#101:\[ f(rv) = N(\mu, R) \] \form#102:$\theta$ \form#103:\[ f(rv) = GiW(V,\nu) \] \form#104:\[ f(rv|rvc) = Di(rvc*k) \] \form#105:$\alpha$ \form#106:\[ f(rv|rvc) = \Gamma(\alpha, \beta) \] \form#107:\[ f(rv) = U(low,high) \] \form#108:\[ f(rv|rvc) = N(A*rvc+const, R) \] \form#109:\[ f(rv|rvc) = N( g(rvc), R) \] \form#110:$ \Lambda $ \form#111:$ R $ \form#112:$ R_e $ \form#113:\[ f(rv|rvc) = \Gamma(k, k/rvc) \] \form#114:\[ f(rv|rvc) = i\Gamma(k, k/(rvc^l \circ ref^{(1-l)}) \] \form#115:\[ f(rv|rvc) = log\mathcal{N}( \log(rvc)-0.5\log(k^2+1), k I) \] \form#116:$ \Psi $ \form#117:$ \nu $ \form#118:$ \nu-p-1 $ \form#119:$w$ \form#120:$x^{(i)}, i=1..n$ \form#121:\[ f(x_i|y_i), i=1..n \] \form#122:$ \cup [x_i,y_i] $ \form#123:\[ f(z_i|y_i,x_i) f(x_i|y_i) f(y_i) i=1..n \] \form#124:$ z_i $ \form#125:$ y_i={}, z_i={}, \forall i $ \form#126:$ f(z_i|x_i,y_i) $ \form#127:$ f(D) $ \form#128:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] \form#129:$ f(a|b,c) $ \form#130:$ f(b) $ \form#131:$ f(c) $ \form#132:$ _t $ \form#133:$ f(a)$ \form#134:$ a $ \form#135:$ x_{t-2} $ \form#136:$ [a_{t-1}, b_{t+1}] $ \form#137:$ f(a) $ \form#138:$ f(x_t |d_1 \ldots d_t)$ \form#139:$ d $ \form#140:\[ f(a) = \mathcal{U}(-1,1) \] \form#141:\[ f(y_t|y_{t-3},u_{t-1}) = \mathcal{N}( a y_{t-3} + b u_{t-1}, r) \] \form#142:$ a,b $ \form#143:$ r $ \form#144:$ y_{t-3}$ \form#145:$ u_{t-1}$ \form#146:$ u $ \form#147:$ f(y_{t}|y_{t-3},u_{t-1})$ \form#148:\[ f(u_t) = \mathcal{N}(0, r_u) \] \form#149:$ r_u $ \form#150:\[ f(y_{t},u_{t}|y_{t-3},u_{t-1}) = f(y_{t}|y_{t-3},u_{t-1})f(u_{t}) \] \form#151:$ f(a|b)$ \form#152:$ f(u_t)$ \form#153:$ f(u_t| \{\})$ \form#154:$ [d_1, d_2, \ldots d_t] $ \form#155:\[ f(x_t|d_1\ldots d_t) \propto f(d_t|x_t,d_1\ldots d_{t-1}) f(x_t| d_1\ldots d_{t-1}) \] \form#156:$ d_t $ \form#157:$ f(d_t|d_1\ldots d_{t-1})$ \form#158:\[ f(d_{t+1}| d_1 \ldots d_{t}), \] \form#159:\[ f(x_t|d_1\ldots d_t)=f(x_{1,t}|x_{2,t},d_1\ldots d_t)f(x_{2,t}|d_1\ldots d_t) \] \form#160:$ x_{1,t}$ \form#161:$ x_{2,t}$ \form#162:$ \phi $ \form#163:$ [\theta_t, r_t, \phi_t]$ \form#164:\[ f(\theta_t, r_t, \phi_t) = f(\theta_t, r_t| \phi_t) f(\phi_t) \] \form#165:$ \phi_t $ \form#166:$[\phi, 1-\phi]$ \form#167:\[ f(\phi_t|\phi_{t-1}) = Di (\phi_{t-1}/k + \beta_c) \] \form#168:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} \form#169:$ x_t $ \form#170:$ A, B, C, D$ \form#171:$v_t, w_t$ \form#172:$Q, R$ \form#173:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} \form#174:$ g(), h() $ \form#175:\[ y_t = \theta' \psi_t + \rho e_t \] \form#176:$[\theta,\rho]$ \form#177:$\psi_t$ \form#178:$\mathcal{N}(0,1)$ \form#179:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] \form#180:\[ \nu_t = \sum_{i=0}^{n} 1 \] \form#181:$ \theta_t , r_t $ \form#182:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] \form#183:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] \form#184:$ \phi \in [0,1]$ \form#185:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] \form#186:$ \phi=0.9 $ \form#187:$ V_0 , \nu_0 $ \form#188:$ V_t , \nu_t $ \form#189:$ \phi<1 $