ARX model conditined by knowledge of the forgetting factor
#include <arx.h>
Public Member Functions | |
| ARXfrg (const ARXfrg &A0) | |
| ARXfrg * | _copy_ () const | 
| Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:.   | |
| void | condition (const vec &val) | 
Substitute val for rvc.  | |
| void | set_statistics (const BMEF *BM0) | 
| Set sufficient statistics.  | |
| virtual void | set_statistics (const BMEF *BM0) | 
| get statistics from another model  | |
| virtual void | flatten (const BMEF *B) | 
| Flatten the posterior according to the given BMEF (of the same type!).  | |
| void | from_setting (const Setting &set) | 
| void | validate () | 
| This method TODO.  | |
| virtual string | to_string () | 
| This method returns a basic info about the current instance.  | |
| virtual void | to_setting (Setting &set) const | 
| This method save all the instance properties into the Setting structure.  | |
Constructors  | |
| void | set_parameters (double frg0) | 
| void | set_constant (bool const0) | 
| void | set_statistics (int dimx0, const ldmat V0, double nu0=-1.0) | 
Mathematical operations  | |
| void | bayes (const vec &dt, const double w) | 
Weighted Bayes  .  | |
| void | bayes (const vec &dt) | 
| Incremental Bayes rule.   | |
| double | logpred (const vec &dt) const | 
| void | flatten (const BMEF *B) | 
| enorm< ldmat > * | epredictor (const vec &rgr) const | 
| Conditioned version of the predictor.  | |
| enorm< ldmat > * | epredictor () const | 
| Predictor for empty regressor.  | |
| mlnorm< ldmat > * | predictor () const | 
| conditional version of the predictor  | |
| mlstudent * | predictor_student () const | 
| ivec | structure_est (egiw Eg0) | 
| Brute force structure estimation.   | |
| ivec | structure_est_LT (egiw Eg0) | 
| Smarter structure estimation by Ludvik Tesar.   | |
Access attributes  | |
| const egiw & | posterior () const | 
Connection  | |
| void | set_rv (const RV &yrv0, const RV &rgrrv0) | 
| RV & | get_yrv () | 
Access to attributes  | |
| void | set_rv (const RV &rv) | 
| const RV & | _drv () const | 
| void | set_drv (const RV &rv) | 
| double | _ll () const | 
| void | set_evalll (bool evl0) | 
Mathematical operations  | |
| virtual void | bayesB (const mat &Dt) | 
| Batch Bayes rule (columns of Dt are observations).  | |
| vec | logpred_m (const mat &dt) const | 
| Matrix version of logpred.  | |
Protected Attributes | |
| int | dimx | 
| size of output variable (needed in regressors)  | |
| RV | _yrv | 
| RV | rgrrv | 
| rv of regressor  | |
| egiw | est | 
Posterior estimate of   in the form of Normal-inverse Wishart density.  | |
| ldmat & | V | 
| cached value of est.V  | |
| double & | nu | 
| cached value of est.nu  | |
| bool | have_constant | 
| switch if constant is modelled or not  | |
| vec | _dt | 
| cached value of data vector for have_constant =true  | |
| egiw | alter_est | 
| Alternative estimate of parameters, used in stabilized forgetting, see [Kulhavy].  | |
| double | frg | 
| forgetting factor  | |
| double | last_lognc | 
cached value of lognc() in the previous step (used in evaluation of ll )  | |
| RV | drv | 
| Random variable of the data (optional).  | |
| double | ll | 
| Logarithm of marginalized data likelihood.  | |
| bool | evalll | 
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.  | |
Extension to conditional BM | |
This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed  | |
| const RV & | _rvc () const | 
| access function  | |
| RV | rvc | 
| Name of extension variable.  | |
Logging of results | |
| 
 | |
| virtual void | set_options (const string &opt) | 
| Set boolean options from a string, recognized are: "logbounds,logll".  | |
| virtual void | log_add (logger &L, const string &name="") | 
| Add all logged variables to a logger.  | |
| virtual void | logit (logger &L) | 
Save results to the given logger, details of what is stored is configured by LIDs and options.  | |
| ivec | LIDs | 
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll].  | |
| ivec | LFlags | 
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs.  | |
| ARXfrg* bdm::ARXfrg::_copy_ | ( | ) |  const [inline, virtual] | 
        
| void bdm::ARX::bayes | ( | const vec & | dt | ) |  [inline, virtual, inherited] | 
        
Incremental Bayes rule.
| dt | vector of input data | 
Reimplemented from bdm::BMEF.
References bdm::ARX::bayes().
| void bdm::ARX::from_setting | ( | const Setting & | set | ) |  [virtual, inherited] | 
        
class = 'ARX'; rv = RV({names_of_dt} ) // description of output variables rgr = RV({names_of_regressors}, [-1,-2]} // description of regressor variables constant = 1; // 0/1 switch if the constant term is modelled or not --- optional --- V0 = [1 0;0 1]; // Initial value of information matrix V --- OR --- dV0 = [1e-3, 1e-5, 1e-5, 1e-5]; // Initial value of diagonal of information matrix V // default: 1e-3 for rv, 1e-5 for rgr nu0 = 6; // initial value of nu, default: rgrlen + 2 frg = 1.0; // forgetting, default frg=1.0 rv_param = RV({names_of_parameters}} // description of parametetr names // default: ["theta_i" and "r_i"]
Reimplemented from bdm::BM.
References bdm::ARX::_dt, bdm::ARX::est, bdm::BMEF::frg, bdm::UI::get(), bdm::ARX::have_constant, bdm::BM::set_options(), bdm::epdf::set_rv(), and bdm::ARX::validate().
| double bdm::ARX::logpred | ( | const vec & | dt | ) |  const [virtual, inherited] | 
        
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented from bdm::BM.
References bdm::ARX::est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, bdm::egiw::lognc(), bdm::ARX::nu, bdm::ldmat::opupdt(), bdm::egiw::pow(), and bdm::ARX::V.
| ivec bdm::ARX::structure_est | ( | egiw | Eg0 | ) |  [inherited] | 
        
Brute force structure estimation.
References bdm::epdf::dimension(), bdm::ARX::est, and bdm::egiw::lognc().
| ivec bdm::ARX::structure_est_LT | ( | egiw | Eg0 | ) |  [inherited] | 
        
Smarter structure estimation by Ludvik Tesar.
RV bdm::ARX::_yrv [protected, inherited] | 
        
description of modelled data 
 in the likelihood function Do NOT access directly, only via get_yrv(). 
Referenced by bdm::ARX::validate().
 1.6.1