bdm::Kalman< sq_T > Class Template Reference

Common abstract base for Kalman filters. More...


Detailed Description

template<class sq_T>
class bdm::Kalman< sq_T >

Common abstract base for Kalman filters.

#include <kalman.h>

List of all members.

Public Member Functions

 Kalman (const Kalman< sq_T > &K0)
 Copy constructor.
void set_statistics (const vec &mu0, const mat &P0)
 set statistics of the posterior
void set_statistics (const vec &mu0, const sq_T &P0)
 set statistics of the posterior
const enorm< sq_T > & posterior () const
 return correctly typed posterior (covariant return)
shared_ptr< epdfshared_posterior ()
 shared posterior
void from_setting (const Setting &set)
 load basic elements of Kalman from structure
void validate ()
 validate object
virtual string to_string ()
 This method returns a basic info about the current instance.
virtual void to_setting (Setting &set) const
 This method save all the instance properties into the Setting structure.
void set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const sq_T &Q0, const sq_T &R0)
 set all matrix parameters
int _dimx ()
 access function
int _dimy ()
 access function
int _dimu ()
 access function
const mat & _A () const
 access function
const mat & _B () const
 access function
const mat & _C () const
 access function
const mat & _D () const
 access function
const sq_T & _Q () const
 access function
const sq_T & _R () const
 access function
Constructors



virtual BM_copy_ () const
 Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:.
Mathematical operations



virtual void bayes (const vec &dt)=0
 Incremental Bayes rule.
virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
virtual double logpred (const vec &dt) const
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfepredictor () const
 Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $.
virtual mpdfpredictor () const
 Constructs conditional density of 1-step ahead predictor $ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $.
Access to attributes

access function



const RV_drv () const
void set_drv (const RV &rv)
 access function
void set_rv (const RV &rv)
 access to rv of the posterior
double _ll () const
 return internal log-likelihood of the last data vector
void set_evalll (bool evl0)
 switch evaluation of log-likelihood on/off

Protected Attributes

RV yrv
 id of output
RV urv
 id of input
mat _K
 Kalman gain.
shared_ptr< enorm< sq_T > > est
 posterior
enorm< sq_T > fy
 marginal on data f(y|y)
RV drv
 Random variable of the data (optional).
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.
int dimx
 cache of rv.count()
int dimy
 cache of rvy.count()
int dimu
 cache of rvu.count()
mat A
 Matrix A.
mat B
 Matrix B.
mat C
 Matrix C.
mat D
 Matrix D.
sq_T Q
 Matrix Q in square-root form.
sq_T R
 Matrix R in square-root form.

Extension to conditional BM

This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed



const RV_rvc () const
 access function
virtual void condition (const vec &val)
 Substitute val for rvc.
RV rvc
 Name of extension variable.

Logging of results



virtual void set_options (const string &opt)
 Set boolean options from a string, recognized are: "logbounds,logll".
virtual void log_add (logger &L, const string &name="")
 Add all logged variables to a logger.
virtual void logit (logger &L)
 Save results to the given logger, details of what is stored is configured by LIDs and options.
ivec LIDs
 IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll].
ivec LFlags
 Flags for logging - same size as LIDs, each entry correspond to the same in LIDs.

Member Function Documentation

virtual BM* bdm::BM::_copy_ (  )  const [inline, virtual, inherited]

Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:.

 BM* _copy_() const {return new BM(*this);} 

Reimplemented in bdm::ARX, bdm::ARXfrg, bdm::KalmanFull, bdm::KalmanCh, bdm::EKFCh, and bdm::BMEF.

Referenced by bdm::MPF::set_BM().

virtual void bdm::BM::bayes ( const vec &  dt  )  [pure virtual, inherited]

Incremental Bayes rule.

Parameters:
dt vector of input data

Implemented in bdm::ARX, bdm::KalmanFull, bdm::KalmanCh, bdm::EKFfull, bdm::EKFCh, bdm::MultiModel, bdm::MixEF, bdm::PF, bdm::MPF, bdm::mexBM, bdm::BMEF, and bdm::multiBM.

Referenced by bdm::BM::bayesB().

virtual double bdm::BM::logpred ( const vec &  dt  )  const [inline, virtual, inherited]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.

References bdm_error.

Referenced by bdm::BM::logpred_m().


The documentation for this class was generated from the following file:

Generated on Thu Oct 15 00:07:49 2009 for mixpp by  doxygen 1.6.1