00001 
00013 #ifndef PARTICLES_H
00014 #define PARTICLES_H
00015 
00016 
00017 #include "../stat/exp_family.h"
00018 
00019 namespace bdm {
00020 
00027 class PF : public BM {
00028 protected:
00030         int n;
00032         eEmp est;
00034         vec &_w;
00036         Array<vec> &_samples;
00038         shared_ptr<mpdf> par;
00040         shared_ptr<mpdf> obs;
00042         vec lls;
00043         
00045         RESAMPLING_METHOD resmethod;
00048         double res_threshold;
00049         
00052 
00054         bool opt_L_smp;
00056         bool opt_L_wei;
00058 
00059 public:
00062         PF ( ) : est(), _w ( est._w() ), _samples ( est._samples() ), opt_L_smp ( false ), opt_L_wei ( false ) {
00063                 LIDs.set_size ( 5 );
00064         };
00065         
00066         void set_parameters (int n0, double res_th0=0.5, RESAMPLING_METHOD rm = SYSTEMATIC ) {
00067                 n = n0;
00068                 res_threshold = res_th0;
00069                 resmethod = rm;
00070         };
00071         void set_model ( shared_ptr<mpdf> par0, shared_ptr<mpdf> obs0) {
00072                 par = par0;
00073                 obs = obs0;
00074                 
00075                 est.set_rv(par->_rv());
00076         };
00077         void set_statistics ( const vec w0, const epdf &epdf0 ) {
00078                 est.set_statistics ( w0, epdf0 );
00079         };
00080         void set_statistics ( const eEmp &epdf0 ) {
00081                 bdm_assert_debug(epdf0._rv().equal(par->_rv()),"Incompatibel input");
00082                 est=epdf0;
00083         };
00089         void set_options ( const string &opt ) {
00090                 BM::set_options ( opt );
00091                 opt_L_wei = ( opt.find ( "logweights" ) != string::npos );
00092                 opt_L_smp = ( opt.find ( "logsamples" ) != string::npos );
00093         }
00095         virtual void bayes_gensmp();
00097         virtual void bayes_weights();
00099         virtual bool do_resampling(){   
00100                 double eff = 1.0 / ( _w * _w );
00101                 return eff < ( res_threshold*n );
00102         }
00103         void bayes ( const vec &dt );
00105         vec& __w() { return _w; }
00107         vec& _lls() { return lls; }
00109         RESAMPLING_METHOD _resmethod() const { return resmethod; }
00111         const eEmp& posterior() const {return est;}
00112         
00125         void from_setting(const Setting &set){
00126                 par = UI::build<mpdf>(set,"parameter_pdf",UI::compulsory);
00127                 obs = UI::build<mpdf>(set,"observation_pdf",UI::compulsory);
00128                 
00129                 prior_from_set(set);
00130                 resmethod_from_set(set);
00131                 
00132                 
00133                 
00134                 RV u = par->_rvc().remove_time().subt( par->_rv() ); 
00135                 
00136                 RV obs_u = obs->_rvc().remove_time().subt( par->_rv() ); 
00137                 
00138                 u.add(obs_u); 
00139                 
00140                 set_drv(concat(obs->_rv(),u) );
00141         }
00143         void resmethod_from_set(const Setting &set){
00144                 string resmeth;
00145                 if (UI::get(resmeth,set,"resmethod",UI::optional)){
00146                         if (resmeth=="systematic") {
00147                                 resmethod= SYSTEMATIC;
00148                         } else  {
00149                                 if (resmeth=="multinomial"){
00150                                         resmethod=MULTINOMIAL;
00151                                 } else {
00152                                         if (resmeth=="stratified"){
00153                                                 resmethod= STRATIFIED;
00154                                         } else {
00155                                                 bdm_error("Unknown resampling method");
00156                                         }
00157                                 }
00158                         }
00159                 } else {
00160                         resmethod=SYSTEMATIC;
00161                 };
00162                 if(!UI::get(res_threshold, set, "res_threshold", UI::optional)){
00163                         res_threshold=0.5;
00164                 }
00165         }
00167         void prior_from_set(const Setting & set){
00168                 shared_ptr<epdf> pri = UI::build<epdf>(set,"prior",UI::compulsory);
00169                 
00170                 eEmp *test_emp=dynamic_cast<eEmp*>(&(*pri));
00171                 if (test_emp) { 
00172                         est=*test_emp;
00173                 } else {
00174                         int n;
00175                         if (!UI::get(n,set,"n",UI::optional)){n=10;}
00176                         
00177                         set_statistics(ones(n)/n, *pri);
00178                 }
00179                 
00180         }
00181         
00182         void validate(){
00183                 n=_w.length();
00184                 lls=zeros(n);
00185                 if (par->_rv()._dsize()>0) {
00186                         bdm_assert(par->_rv()._dsize()==est.dimension(),"Mismatch of RV and dimension of posterior" );
00187                 }
00188         }
00190         void resample(ivec &ind){
00191                 est.resample(ind,resmethod);
00192         }
00194         Array<vec>& __samples(){return _samples;}
00195 };
00196 UIREGISTER(PF);
00197 
00205 class MPF : public BM  {
00206         protected:
00208         shared_ptr<PF> pf;
00210         Array<BM*> BMs;
00211 
00213 
00214         class mpfepdf : public epdf  {
00216                 shared_ptr<PF> &pf;
00218                 Array<BM*> &BMs;
00219         public:
00221                 mpfepdf (shared_ptr<PF> &pf0, Array<BM*> &BMs0): epdf(), pf(pf0), BMs(BMs0) { };
00223                 void read_parameters(){
00224                         rv = concat(pf->posterior()._rv(), BMs(0)->posterior()._rv());
00225                         dim = pf->posterior().dimension() + BMs(0)->posterior().dimension();
00226                         bdm_assert_debug(dim == rv._dsize(), "Wrong name ");
00227                 }
00228                 vec mean() const {
00229                         const vec &w = pf->posterior()._w();
00230                         vec pom = zeros ( BMs(0)->posterior ().dimension() );
00231                         
00232                         for ( int i = 0; i < w.length(); i++ ) {
00233                                 pom += BMs ( i )->posterior().mean() * w ( i );
00234                         }
00235                         return concat ( pf->posterior().mean(), pom );
00236                 }
00237                 vec variance() const {
00238                         const vec &w = pf->posterior()._w();
00239                         
00240                         vec pom = zeros ( BMs(0)->posterior ().dimension() );
00241                         vec pom2 = zeros ( BMs(0)->posterior ().dimension() );
00242                         vec mea;
00243                         
00244                         for ( int i = 0; i < w.length(); i++ ) {
00245                                 
00246                                 mea = BMs ( i )->posterior().mean();
00247                                 pom += mea * w ( i );
00248                                 
00249                                 pom2 += ( BMs ( i )->posterior().variance() + pow ( mea, 2 ) ) * w ( i );
00250                         }
00251                         return concat ( pf->posterior().variance(), pom2 - pow ( pom, 2 ) );
00252                 }
00253                 
00254                 void qbounds ( vec &lb, vec &ub, double perc = 0.95 ) const {
00255                         
00256                         vec lbp;
00257                         vec ubp;
00258                         pf->posterior().qbounds ( lbp, ubp );
00259 
00260                         
00261                         int dimC = BMs ( 0 )->posterior().dimension();
00262                         int j;
00263                         
00264                         vec lbc ( dimC );
00265                         vec ubc ( dimC );
00266                         
00267                         vec Lbc ( dimC );
00268                         vec Ubc ( dimC );
00269                         Lbc = std::numeric_limits<double>::infinity();
00270                         Ubc = -std::numeric_limits<double>::infinity();
00271 
00272                         for ( int i = 0; i < BMs.length(); i++ ) {
00273                                 
00274                                 BMs ( i )->posterior().qbounds ( lbc, ubc );
00275                                 
00276                                 for ( j = 0; j < dimC; j++ ) {
00277                                         if ( lbc ( j ) < Lbc ( j ) ) {
00278                                                 Lbc ( j ) = lbc ( j );
00279                                         }
00280                                         if ( ubc ( j ) > Ubc ( j ) ) {
00281                                                 Ubc ( j ) = ubc ( j );
00282                                         }
00283                                 }
00284                         }
00285                         lb = concat ( lbp, Lbc );
00286                         ub = concat ( ubp, Ubc );
00287                 }
00288 
00289                 vec sample() const {
00290                         bdm_error ( "Not implemented" );
00291                         return vec();
00292                 }
00293 
00294                 double evallog ( const vec &val ) const {
00295                         bdm_error ( "not implemented" );
00296                         return 0.0;
00297                 }
00298         };
00299 
00301         mpfepdf jest;
00302 
00304         bool opt_L_mea;
00305 
00306 public:
00308         MPF () :  jest (pf,BMs) {};
00310         void set_parameters ( shared_ptr<mpdf> par0, shared_ptr<mpdf> obs0, int n0, RESAMPLING_METHOD rm = SYSTEMATIC ) {
00311                 pf->set_model ( par0, obs0); 
00312                 pf->set_parameters(n0, rm );
00313                 BMs.set_length ( n0 );
00314         }
00316         void set_BM ( const BM &BMcond0 ) {
00317 
00318                 int n=pf->__w().length();
00319                 BMs.set_length(n);
00320                 
00321                 
00322                 for ( int i = 0; i < n; i++ ) {
00323                         BMs ( i ) = BMcond0._copy_();
00324                 }
00325         };
00326 
00327         void bayes ( const vec &dt );
00328         const epdf& posterior() const {
00329                 return jest;
00330         }
00333         void set_options ( const string &opt ) {
00334                 BM::set_options(opt);
00335                 opt_L_mea = ( opt.find ( "logmeans" ) != string::npos );
00336         }
00337 
00339         const BM* _BM ( int i ) {
00340                 return BMs ( i );
00341         }
00342         
00354         void from_setting(const Setting &set){
00355                 shared_ptr<mpdf> par = UI::build<mpdf>(set,"parameter_pdf",UI::compulsory);
00356                 shared_ptr<mpdf> obs= new mpdf(); 
00357 
00358                 pf = new PF;
00359                 
00360                 pf->prior_from_set(set);
00361                 pf->resmethod_from_set(set);
00362                 pf->set_model(par,obs);
00363                 
00364                 shared_ptr<BM> BM0 =UI::build<BM>(set,"BM",UI::compulsory);
00365                 set_BM(*BM0);
00366                 
00367                 string opt;
00368                 if (UI::get(opt,set,"options",UI::optional)){
00369                         set_options(opt);
00370                 }
00371                 
00372                 
00373                 RV u = par->_rvc().remove_time().subt( par->_rv() );            
00374                 set_drv(concat(BM0->_drv(),u) );
00375                 validate();
00376         }
00377         void validate(){
00378                 try{
00379                 pf->validate();
00380                 } catch (std::exception &e){
00381                         throw UIException("Error in PF part of MPF:");
00382                 }
00383                 jest.read_parameters();
00384                 for ( int i = 0; i < pf->__w().length(); i++ ) {
00385                         BMs ( i )->condition ( pf->posterior()._sample ( i ) );
00386                 }
00387         }
00388         
00389 };
00390 UIREGISTER(MPF);
00391 
00392 }
00393 #endif // KF_H
00394 
00395