work/mixpp/bdm/stat/libEF.h

Go to the documentation of this file.
00001 
00013 #ifndef EF_H
00014 #define EF_H
00015 
00016 #include <itpp/itbase.h>
00017 #include "../math/libDC.h"
00018 #include "libBM.h"
00019 #include "../itpp_ext.h"
00020 //#include <std>
00021 
00022 using namespace itpp;
00023 
00024 
00026 extern Uniform_RNG UniRNG;
00028 extern Normal_RNG NorRNG;
00030 extern Gamma_RNG GamRNG;
00031 
00038 class eEF : public epdf {
00039 
00040 public:
00041 //      eEF() :epdf() {};
00043         eEF ( const RV &rv ) :epdf ( rv ) {};
00045         virtual void tupdate ( double phi, mat &vbar, double nubar ) {};
00047         virtual void dupdate ( mat &v,double nu=1.0 ) {};
00048 };
00049 
00056 class mEF : public mpdf {
00057 
00058 public:
00060         mEF ( const RV &rv0, const RV &rvc0 ) :mpdf ( rv0,rvc0 ) {};
00061 };
00062 
00068 template<class sq_T>
00069 
00070 class enorm : public eEF {
00071 protected:
00073         vec mu;
00075         sq_T R;
00077         int dim;
00078 public:
00079 //      enorm() :eEF() {};
00081         enorm ( RV &rv );
00083         void set_parameters ( const vec &mu,const sq_T &R );
00085         void tupdate ( double phi, mat &vbar, double nubar );
00087         void dupdate ( mat &v,double nu=1.0 );
00088 
00089         vec sample() const;
00091         mat sample ( int N ) const;
00092         double eval ( const vec &val ) const ;
00093         double evalpdflog ( const vec &val ) const;
00094         vec mean() const {return mu;}
00095 
00096 //Access methods
00098         vec& _mu() {return mu;}
00099         
00101         void set_mu(const vec mu0) { mu=mu0;}
00102 
00104         sq_T& _R() {return R;}
00105 
00107         mat getR () {return R.to_mat();}
00108 };
00109 
00119 class egamma : public eEF {
00120 protected:
00122         vec alpha;
00124         vec beta;
00125 public :
00127         egamma ( const RV &rv ) :eEF ( rv ) {};
00129         void set_parameters ( const vec &a, const vec &b ) {alpha=a,beta=b;};
00130         vec sample() const;
00132         mat sample ( int N ) const;
00133         double evalpdflog ( const vec &val ) const;
00135         void _param ( vec* &a, vec* &b ) {a=&alpha;b=&beta;};
00136         vec mean() const {vec pom ( alpha ); pom/=beta; return pom;}
00137 };
00138 /*
00140 class emix : public epdf {
00141 protected:
00142         int n;
00143         vec &w;
00144         Array<epdf*> Coms;
00145 public:
00147         emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};
00148         void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}
00149         vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};
00150         vec sample() {it_error ( "Not implemented" );return 0;}
00151 };
00152 */
00153 
00155 
00156 class euni: public epdf {
00157 protected:
00159         vec low;
00161         vec high;
00163         vec distance;
00165         double nk;
00167         double lnk;
00168 public:
00170         euni ( const RV rv ) :epdf ( rv ) {}
00171         double eval ( const vec &val ) const  {return nk;}
00172         double evalpdflog ( const vec &val ) const  {return lnk;}
00173         vec sample() const {
00174                 vec smp ( rv.count() ); UniRNG.sample_vector ( rv.count(),smp );
00175                 return low+distance*smp;
00176         }
00178         void set_parameters ( const vec &low0, const vec &high0 ) {
00179                 distance = high0-low0;
00180                 it_assert_debug ( min ( distance ) >0.0,"bad support" );
00181                 low = low0;
00182                 high = high0;
00183                 nk = prod ( 1.0/distance );
00184                 lnk = log ( nk );
00185         }
00186         vec mean() const {vec pom=high; pom-=low; pom/=2.0; return pom;}
00187 };
00188 
00189 
00195 template<class sq_T>
00196 class mlnorm : public mEF {
00198         enorm<sq_T> epdf;
00199         vec& _mu; //cached epdf.mu;
00200         mat A;
00201 public:
00203         mlnorm ( RV &rv,RV &rvc );
00205         void set_parameters ( const  mat &A, const sq_T &R );
00207         vec samplecond ( vec &cond, double &lik );
00209         mat samplecond ( vec &cond, vec &lik, int n );
00211         void condition ( vec &cond );
00212 };
00213 
00223 class mgamma : public mEF {
00224 protected:
00226         egamma epdf;
00228         double k;
00230         vec* _beta;
00231 
00232 public:
00234         mgamma ( const RV &rv,const RV &rvc );
00236         void set_parameters ( double k );
00238         vec samplecond ( vec &cond, double &lik );
00240         mat samplecond ( vec &cond, vec &lik, int n );
00241         void condition ( const vec &val ) {*_beta=k/val;};
00242 };
00243 
00255 class mgamma_fix : public mgamma {
00256 protected:
00257         double l;
00258         vec refl;
00259 public:
00261         mgamma_fix ( const RV &rv,const RV &rvc ) : mgamma ( rv,rvc ),refl ( rv.count() ) {};
00263         void set_parameters ( double k0 , vec ref0, double l0 ) {
00264                 mgamma::set_parameters ( k0 );
00265                 refl=pow ( ref0,1.0-l0 );l=l0;
00266         };
00267 
00268         void condition ( const vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); *_beta=k/mean;};
00269 };
00270 
00272 enum RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
00278 class eEmp: public epdf {
00279 protected :
00281         int n;
00283         vec w;
00285         Array<vec> samples;
00286 public:
00288         eEmp ( const RV &rv0 ,int n0 ) :epdf ( rv0 ),n ( n0 ),w ( n ),samples ( n ) {};
00290         void set_parameters ( const vec &w0, epdf* pdf0 );
00292         vec& _w()  {return w;};
00294         Array<vec>& _samples() {return samples;};
00296         ivec resample ( RESAMPLING_METHOD method = SYSTEMATIC );
00298         vec sample() const {it_error ( "Not implemented" );return 0;}
00300         double evalpdflog ( const vec &val ) const {it_error ( "Not implemented" );return 0.0;}
00301         vec mean() const {
00302                 vec pom=zeros ( rv.count() );
00303                 for ( int i=0;i<n;i++ ) {pom+=samples ( i ) *w ( i );}
00304                 return pom;
00305         }
00306 };
00307 
00308 
00310 
00311 template<class sq_T>
00312 enorm<sq_T>::enorm ( RV &rv ) :eEF ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {};
00313 
00314 template<class sq_T>
00315 void enorm<sq_T>::set_parameters ( const vec &mu0, const sq_T &R0 ) {
00316 //Fixme test dimensions of mu0 and R0;
00317         mu = mu0;
00318         R = R0;
00319 };
00320 
00321 template<class sq_T>
00322 void enorm<sq_T>::dupdate ( mat &v, double nu ) {
00323         //
00324 };
00325 
00326 template<class sq_T>
00327 void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {
00328         //
00329 };
00330 
00331 template<class sq_T>
00332 vec enorm<sq_T>::sample() const {
00333         vec x ( dim );
00334         NorRNG.sample_vector ( dim,x );
00335         vec smp = R.sqrt_mult ( x );
00336 
00337         smp += mu;
00338         return smp;
00339 };
00340 
00341 template<class sq_T>
00342 mat enorm<sq_T>::sample ( int N ) const {
00343         mat X ( dim,N );
00344         vec x ( dim );
00345         vec pom;
00346         int i;
00347 
00348         for ( i=0;i<N;i++ ) {
00349                 NorRNG.sample_vector ( dim,x );
00350                 pom = R.sqrt_mult ( x );
00351                 pom +=mu;
00352                 X.set_col ( i, pom );
00353         }
00354 
00355         return X;
00356 };
00357 
00358 template<class sq_T>
00359 double enorm<sq_T>::eval ( const vec &val ) const {
00360         double pdfl,e;
00361         pdfl = evalpdflog ( val );
00362         e = exp ( pdfl );
00363         return e;
00364 };
00365 
00366 template<class sq_T>
00367 double enorm<sq_T>::evalpdflog ( const vec &val ) const {
00368         // 1.83787706640935 = log(2pi)
00369         return -0.5* ( R.cols() * 1.83787706640935 +R.logdet() +R.invqform ( mu-val ) );
00370 };
00371 
00372 
00373 template<class sq_T>
00374 mlnorm<sq_T>::mlnorm ( RV &rv0,RV &rvc0 ) :mEF ( rv0,rvc0 ),epdf ( rv ),A ( rv0.count(),rv0.count() ),_mu(epdf._mu()) {
00375 }
00376 
00377 template<class sq_T>
00378 void mlnorm<sq_T>::set_parameters ( const mat &A0, const sq_T &R0 ) {
00379         epdf.set_parameters ( zeros ( rv.count() ),R0 );
00380         A = A0;
00381 }
00382 
00383 template<class sq_T>
00384 vec mlnorm<sq_T>::samplecond ( vec &cond, double &lik ) {
00385         this->condition ( cond );
00386         vec smp = epdf.sample();
00387         lik = epdf.eval ( smp );
00388         return smp;
00389 }
00390 
00391 template<class sq_T>
00392 mat mlnorm<sq_T>::samplecond ( vec &cond, vec &lik, int n ) {
00393         int i;
00394         int dim = rv.count();
00395         mat Smp ( dim,n );
00396         vec smp ( dim );
00397         this->condition ( cond );
00398 
00399         for ( i=0; i<n; i++ ) {
00400                 smp = epdf.sample();
00401                 lik ( i ) = epdf.eval ( smp );
00402                 Smp.set_col ( i ,smp );
00403         }
00404 
00405         return Smp;
00406 }
00407 
00408 template<class sq_T>
00409 void mlnorm<sq_T>::condition ( vec &cond ) {
00410         _mu = A*cond;
00411 //R is already assigned;
00412 }
00413 
00415 
00416 
00417 #endif //EF_H

Generated on Fri Apr 18 11:15:15 2008 for mixpp by  doxygen 1.5.3