work/mixpp/bdm/estim/libKF.h

Go to the documentation of this file.
00001 
00013 #ifndef KF_H
00014 #define KF_H
00015 
00016 #include <itpp/itbase.h>
00017 #include "../stat/libFN.h"
00018 #include "../stat/libEF.h"
00019 #include "../math/chmat.h"
00020 
00021 using namespace itpp;
00022 
00027 class KalmanFull {
00028 protected:
00029         int dimx, dimy, dimu;
00030         mat A, B, C, D, R, Q;
00031 
00032         //cache
00033         mat _Pp, _Ry, _iRy, _K;
00034 public:
00035         //posterior
00037         vec mu;
00039         mat P;
00040 
00041         bool evalll;
00042         double ll;
00043 public:
00045         KalmanFull ( mat A, mat B, mat C, mat D, mat R, mat Q, mat P0, vec mu0 );
00047         void bayes ( const vec &dt );
00049         friend std::ostream &operator<< ( std::ostream &os, const KalmanFull &kf );
00051         KalmanFull(){};
00052 };
00053 
00054 
00062 template<class sq_T>
00063 
00064 class Kalman : public BM {
00065 protected:
00067         RV rvy;
00069         RV rvu;
00071         int dimx;
00073         int dimy;
00075         int dimu;
00077         mat A;
00079         mat B; 
00081         mat C;
00083         mat D;
00085         sq_T Q;
00087         sq_T R;
00088 
00090         enorm<sq_T> est;
00092         enorm<sq_T> fy;
00093 
00095         mat _K;
00097         vec& _yp;
00099         sq_T& _Ry;
00101         vec& _mu;
00103         sq_T& _P;
00104 
00105 public:
00107         Kalman ( RV rvx0, RV rvy0, RV rvu0 );
00109         Kalman ( const Kalman<sq_T> &K0 );
00111         void set_parameters ( const mat &A0,const mat &B0,const mat &C0,const mat &D0,const sq_T &R0,const sq_T &Q0 );
00113         void set_est ( const vec &mu0, const sq_T &P0 ) {
00114                 sq_T pom(dimy);
00115                 est.set_parameters ( mu0,P0 );
00116                 P0.mult_sym(C,pom);
00117                 fy.set_parameters ( C*mu0, pom );
00118         };
00119 
00121         void bayes ( const vec &dt );
00123         epdf& _epdf() {return est;}
00125         mat& __K() {return _K;}
00127         vec _dP() {return _P->getD();}
00128 };
00129 
00132 class KalmanCh : public Kalman<chmat>{
00133 protected:
00135 mat preA;
00137 mat postA;
00138 
00139 public:
00141         KalmanCh ( RV rvx0, RV rvy0, RV rvu0 ):Kalman<chmat>(rvx0,rvy0,rvu0),preA(dimy+dimx+dimx,dimy+dimx),postA(dimy+dimx,dimy+dimx){};
00143         void set_parameters ( const mat &A0,const mat &B0,const mat &C0,const mat &D0,const chmat &R0,const chmat &Q0 );
00144         void set_est ( const vec &mu0, const chmat &P0 ) {
00145                 est.set_parameters ( mu0,P0 );
00146         };
00147         
00148         
00162         void bayes ( const vec &dt );
00163 };
00164 
00170 class EKFfull : public KalmanFull, public BM {
00171 
00173         diffbifn* pfxu;
00175         diffbifn* phxu;
00176         
00177         enorm<fsqmat> E; 
00178 public:
00180         EKFfull ( RV rvx, RV rvy, RV rvu );
00182         void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const mat Q0, const mat R0 );
00184         void bayes ( const vec &dt );
00186         void set_est (vec mu0, mat P0){mu=mu0;P=P0;};
00188         epdf& _epdf(){return E;};
00189 };
00190 
00196 template<class sq_T>
00197 class EKF : public Kalman<fsqmat> {
00199         diffbifn* pfxu;
00201         diffbifn* phxu;
00202 public:
00204         EKF ( RV rvx, RV rvy, RV rvu );
00206         void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const sq_T Q0, const sq_T R0 );
00208         void bayes ( const vec &dt );
00209 };
00210 
00217 class EKFCh : public KalmanCh {
00219         diffbifn* pfxu;
00221         diffbifn* phxu;
00222 public:
00224         EKFCh ( RV rvx, RV rvy, RV rvu );
00226         void set_parameters ( diffbifn* pfxu, diffbifn* phxu, const chmat Q0, const chmat R0 );
00228         void bayes ( const vec &dt );
00229 };
00230 
00235 class KFcondQR : public Kalman<ldmat>, public BMcond {
00236 //protected:
00237 public:
00239         KFcondQR ( RV rvx, RV rvy, RV rvu, RV rvRQ ) : Kalman<ldmat> ( rvx, rvy,rvu ),BMcond ( rvRQ ) {};
00240 
00241         void condition ( const vec &RQ );
00242 };
00243 
00248 class KFcondR : public Kalman<ldmat>, public BMcond {
00249 //protected:
00250 public:
00252         KFcondR ( RV rvx, RV rvy, RV rvu, RV rvR ) : Kalman<ldmat> ( rvx, rvy,rvu ),BMcond ( rvR ) {};
00253 
00254         void condition ( const vec &R );
00255 };
00256 
00258 
00259 template<class sq_T>
00260 Kalman<sq_T>::Kalman ( const Kalman<sq_T> &K0 ) : BM ( K0.rv ),rvy ( K0.rvy ),rvu ( K0.rvu ),
00261                 dimx ( rv.count() ), dimy ( rvy.count() ),dimu ( rvu.count() ),
00262                 A ( dimx,dimx ), B ( dimx,dimu ), C ( dimy,dimx ), D ( dimy,dimu ),
00263                 Q(dimx), R(dimy),
00264                 est ( rv ), fy ( rvy ), _mu(est._mu()), _P(est._R()), _yp(fy._mu()),_Ry(fy._R()) {
00265 
00266         this->set_parameters ( K0.A, K0.B, K0.C, K0.D, K0.R, K0.Q );
00267 
00268 // copy values in pointers
00269         _mu = K0._mu;
00270         _P = K0._P;
00271         _yp = K0._yp;
00272         _Ry = K0._Ry;
00273 
00274 }
00275 
00276 template<class sq_T>
00277 Kalman<sq_T>::Kalman ( RV rvx, RV rvy0, RV rvu0 ) : BM ( rvx ),rvy ( rvy0 ),rvu ( rvu0 ),
00278                 dimx ( rvx.count() ), dimy ( rvy.count() ),dimu ( rvu.count() ),
00279                 A ( dimx,dimx ), B ( dimx,dimu ), C ( dimy,dimx ), D ( dimy,dimu ),
00280                 Q(dimx), R (dimy),
00281                 est ( rvx ), fy ( rvy ), _mu(est._mu()), _P(est._R()), _yp(fy._mu()),_Ry(fy._R()) {
00282 };
00283 
00284 template<class sq_T>
00285 void Kalman<sq_T>::set_parameters ( const mat &A0,const  mat &B0, const mat &C0, const mat &D0, const sq_T &R0, const sq_T &Q0 ) {
00286         it_assert_debug ( A0.cols() ==dimx, "Kalman: A is not square" );
00287         it_assert_debug ( B0.rows() ==dimx, "Kalman: B is not compatible" );
00288         it_assert_debug ( C0.cols() ==dimx, "Kalman: C is not square" );
00289         it_assert_debug ( ( D0.rows() ==dimy ) || ( D0.cols() ==dimu ), "Kalman: D is not compatible" );
00290         it_assert_debug ( ( R0.cols() ==dimy ) || ( R0.rows() ==dimy ), "Kalman: R is not compatible" );
00291         it_assert_debug ( ( Q0.cols() ==dimx ) || ( Q0.rows() ==dimx ), "Kalman: Q is not compatible" );
00292 
00293         A = A0;
00294         B = B0;
00295         C = C0;
00296         D = D0;
00297         R = R0;
00298         Q = Q0;
00299 }
00300 
00301 template<class sq_T>
00302 void Kalman<sq_T>::bayes ( const vec &dt ) {
00303         it_assert_debug ( dt.length() == ( dimy+dimu ),"KalmanFull::bayes wrong size of dt" );
00304 
00305         sq_T iRy(dimy);
00306         vec u = dt.get ( dimy,dimy+dimu-1 );
00307         vec y = dt.get ( 0,dimy-1 );
00308         //Time update
00309         _mu = A* _mu + B*u;
00310         //P  = A*P*A.transpose() + Q; in sq_T
00311         _P.mult_sym ( A );
00312         _P  +=Q;
00313 
00314         //Data update
00315         //_Ry = C*P*C.transpose() + R; in sq_T
00316         _P.mult_sym ( C, _Ry );
00317         _Ry  +=R;
00318 
00319         mat Pfull = _P.to_mat();
00320 
00321         _Ry.inv ( iRy ); // result is in _iRy;
00322         _K = Pfull*C.transpose() * ( iRy.to_mat() );
00323 
00324         sq_T pom ( ( int ) Pfull.rows() );
00325         iRy.mult_sym_t ( C*Pfull,pom );
00326         (_P ) -= pom; // P = P -PC'iRy*CP;
00327         (_yp ) = C* _mu  +D*u; //y prediction
00328         (_mu ) += _K* ( y- _yp  );
00329 
00330 
00331         if ( evalll==true ) { //likelihood of observation y
00332                 ll=fy.evalpdflog ( y );
00333         }
00334 
00335 //cout << "y: " << y-(*_yp) <<" R: " << _Ry->to_mat() << " iR: " << _iRy->to_mat() << " ll: " << ll <<endl;
00336 
00337 };
00338  
00339 
00340 
00341 //TODO why not const pointer??
00342 
00343 template<class sq_T>
00344 EKF<sq_T>::EKF ( RV rvx0, RV rvy0, RV rvu0 ) : Kalman<sq_T> ( rvx0,rvy0,rvu0 ) {}
00345 
00346 template<class sq_T>
00347 void EKF<sq_T>::set_parameters ( diffbifn* pfxu0,  diffbifn* phxu0,const sq_T Q0,const sq_T R0 ) {
00348         pfxu = pfxu0;
00349         phxu = phxu0;
00350 
00351         //initialize matrices A C, later, these will be only updated!
00352         pfxu->dfdx_cond ( _mu,zeros ( dimu ),A,true );
00353 //      pfxu->dfdu_cond ( *_mu,zeros ( dimu ),B,true );
00354         B.clear();
00355         phxu->dfdx_cond ( _mu,zeros ( dimu ),C,true );
00356 //      phxu->dfdu_cond ( *_mu,zeros ( dimu ),D,true );
00357         D.clear();
00358 
00359         R = R0;
00360         Q = Q0;
00361 }
00362 
00363 template<class sq_T>
00364 void EKF<sq_T>::bayes ( const vec &dt ) {
00365         it_assert_debug ( dt.length() == ( dimy+dimu ),"KalmanFull::bayes wrong size of dt" );
00366 
00367         sq_T iRy(dimy,dimy);
00368         vec u = dt.get ( dimy,dimy+dimu-1 );
00369         vec y = dt.get ( 0,dimy-1 );
00370         //Time update
00371         _mu = pfxu->eval ( _mu, u );
00372         pfxu->dfdx_cond ( _mu,u,A,false ); //update A by a derivative of fx
00373 
00374         //P  = A*P*A.transpose() + Q; in sq_T
00375         _P.mult_sym ( A );
00376         _P +=Q;
00377 
00378         //Data update
00379         phxu->dfdx_cond ( _mu,u,C,false ); //update C by a derivative hx
00380         //_Ry = C*P*C.transpose() + R; in sq_T
00381         _P.mult_sym ( C, _Ry );
00382         ( _Ry ) +=R;
00383 
00384         mat Pfull = _P.to_mat();
00385 
00386         _Ry.inv ( iRy ); // result is in _iRy;
00387         _K = Pfull*C.transpose() * ( iRy.to_mat() );
00388 
00389         sq_T pom ( ( int ) Pfull.rows() );
00390         iRy.mult_sym_t ( C*Pfull,pom );
00391         (_P ) -= pom; // P = P -PC'iRy*CP;
00392         _yp = phxu->eval ( _mu,u ); //y prediction
00393         ( _mu ) += _K* ( y-_yp );
00394 
00395         if ( evalll==true ) {ll+=fy.evalpdflog ( y );}
00396 };
00397 
00398 
00399 #endif // KF_H
00400 
00401 

Generated on Fri Apr 18 11:15:14 2008 for mixpp by  doxygen 1.5.3